Advertisement

Physics of the Solid State

, Volume 59, Issue 4, pp 682–693 | Cite as

Anisotropy of the mean free paths of phonons in single-crystal films of germanium, silicon, and diamond at low temperatures

Semiconductors

Abstract

The physical aspects of the influence of the elastic energy anisotropy of crystals on the anisotropy of the mean free paths of phonons in single-crystal films of germanium, silicon, and diamond in the diffuse scattering of phonons at the boundaries of the samples have been considered. It has been shown that, for sufficiently wide films of germanium, silicon, and diamond with the {100} and {111} orientations and the lengths of less than or equal to their width, the phonon mean free paths are isotropic (independent of the direction of the temperature gradient in the plane of the film). The anisotropy of the phonon mean free paths depends primarily on the orientation of the film plane and is determined by the focusing and defocusing of phonon modes. For single-crystal films of germanium, silicon, and diamond with the {100} and {111} orientations and lengths much larger than their width, the phonon mean free paths are anisotropic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93 (2), 793 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    A. D. McConnell and K. E. Goodson, Annu. Rev. Heat Transfer 14, 128 (2005).CrossRefGoogle Scholar
  3. 3.
    D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, Appl. Phys. Rev. 1 (1), 011305 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83 (14), 2934 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    A. K. McCurdy, H. J. Maris, and C. Erlbaum, Phys. Rev. B: Solid State 2, 4077 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    H. J. Maris and S. Tamura, Phys. Rev. B: Condens. Matter 85, 054304 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    I. G. Kuleyev, I. I. Kuleyev, and S. M. Bakharev, J. Exp. Theor. Phys. 118 (2), 253 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    H. B. G. Casimir, Physica (Amsterdam) 5, 495 (1938).ADSCrossRefGoogle Scholar
  9. 9.
    B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. Lett. 23, 416 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    H. J. Maris, J. Acoust. Soc. Am. 50, 812 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    J. P. Wolfe, Imaging Phonons Acoustic Wave Propagation in Solids (Cambridge University Press, New York, 1998).CrossRefGoogle Scholar
  12. 12.
    J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press Oxford, 1960; Inostrannaya Literatura, Moscow, 1962).MATHGoogle Scholar
  13. 13.
    B. M. Mogilevskii and A. F. Chudnovskii, Thermal Conductivity of Semiconductors (Nauka, Moscow, 1972) [in Russian].Google Scholar
  14. 14.
    W. Liu and M. Asheghi, Appl. Phys. Lett. 84 (19), 3819 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, J. Heat Transfer 120, 30 (1998).CrossRefGoogle Scholar
  16. 16.
    M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, Appl. Phys. Lett. 71 (13), 1798 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    Y. F. Zhu, J. S. Lian, and Q. Jiang, Appl. Phys. Lett. 92 (11), 113101 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    J. E. Turney, A. J. H. McGaughey, and C. H. Amon, J. Appl. Phys. 107 (2), 024317 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    Z. Aksamija and I. Knezevic, Phys. Rev. B: Condens. Matter 82, 045319 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    K. Fuchs, Math. Proc. Cambridge Philos. Soc. 34, 100 (1938).ADSCrossRefGoogle Scholar
  21. 21.
    E. H. Sondheimer, Adv. Phys. 1, 1 (1952).ADSCrossRefGoogle Scholar
  22. 22.
    M. P. Zaitlin, L. M. Scherr, and A. C. Anderson, Phys. Rev. B: Solid State 12, 4487 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Phys. B (Amsterdam, Neth.) 416, 81 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    I. G. Kuleyev, I. I. Kuleyev, and S. M. Bakharev, J. Exp. Theor. Phys. 119 (3), 460 (2014).CrossRefGoogle Scholar
  25. 25.
    I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Phys. Solid State 55 (1), 31 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    N. Mingo, Phys. Rev. B: Condens. Matter 68, 113308 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    I. G. Kuleev and I. I. Kuleev, Phys. Solid State 49 (3), 437 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations