Advertisement

Physics of the Solid State

, Volume 59, Issue 4, pp 674–681 | Cite as

Misfit dislocation locking and rotation during gallium nitride growth on SiC/Si substrates

  • S. A. Kukushkin
  • A. V. Osipov
  • V. N. Bessolov
  • E. V. Konenkova
  • V. N. Panteleev
Semiconductors
  • 52 Downloads

Abstract

The effect of changing the misfit dislocation propagation direction during GaN layer growth on the AlN/SiC/Si(111) structure surface is detected. The effect is as follows. As the GaN layer growing on AlN/SiC/Si(111) reaches a certain thickness of ~300 nm, misfit dislocations initially along the layer growth axis stop and begin to move in the direction perpendicular to the growth axis. A theoretical model of AlN and GaN nucleation on the (111) SiC/Si face, explaining the effect of changing the misfit dislocation motion direction, is constructed. The effect of changing the nucleation mechanism from the island one for AlN on SiC/Si(111) to the layer one for the GaN layer on AlN/SiC/Si is experimentally detected and theoretically explained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Pimputkar, J. S. Speck, S. P. DenBars, and S. Nakamura, Nat. Photonics 3, 180 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    J. Komiyama, D. Yoshihisa, S. Suzuki, K. Toru, and H. Nakanishi, Appl. Phys. Lett. 88, 091901 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    G. Ferro, Solid State Mater. Sci. 40, 56 (2015).Google Scholar
  4. 4.
    A. Severinoa, C. Lockeb, R. Anzalonea, M. Camardaa, N. Pilusoa, A. La Magnaa, S. E. Saddowb, G. Abbondanzac, G. D’Arrigoa, and F. La Viaa, ECS Trans. 35, 99 (2011).CrossRefGoogle Scholar
  5. 5.
    S. A. Kukushkin and A. V. Osipov, Phys. Solid State 50 (7), 1238 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    S. A. Kukushkin and A. V. Osipov, J. Appl. Phys. 113, 024909 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56 (8), 1507 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    S. A. Kukushkin and A. V. Osipov, Phys. Solid State 58 (4), 747 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    V. N. Bessolov, E. V. Konenkova, S. A. Kukushkin, A. V. Osipov, and S. N. Rodin, Rev. Adv. Mater. Sci. 38, 75 (2014).Google Scholar
  11. 11.
    L. M. Sorokin, A. V. Myasoedov, A. E. Kalmykov, D. A. Kirilenko, V. N. Bessolov, and S. A. Kukushkin, Semicond. Sci. Technol. 30, 114002 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    V. N. Bessolov, V. Yu. Davydov, Yu. V. Zhilyaev, E.V.Konenkova, G. N. Mosina, S. D. Raevskii, S. N. Rodin, Sh. Sharofidinov, M. P. Shcheglov, P. H. Seok, and K. Masayoshi, Tech. Phys. Lett. 31 (11), 915 (2005).CrossRefGoogle Scholar
  13. 13.
    J. W. Matthews, A. E. Blackeslee, and S. Mader, Thin Solid Films 33, 253 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Chernov, E. I. Givargizov, and Kh. S. Bagdasarov, in Modern Crystallography, Vol. 3: Crystal Growth, Ed. by B. K. Vainshtein, A. A. Chernov, and L. A. Shuvalov (Nauka, Moscow, 1980; Springer-Verlag, Berlin, 1984).Google Scholar
  15. 15.
    S. A. Kukushkin and A. V. Osipov, Prog. Surf. Sci. 151, 1 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    S. A. Kukushkin and T. V. Sakalo, Acta Metall. Mater. 41, 1237 (1993).CrossRefGoogle Scholar
  17. 17.
    S. A. Kukushkin and T. V. Sakalo, Acta Metall. Mater. 42, 2797 (1994).CrossRefGoogle Scholar
  18. 18.
    T. V. Sakalo and S. A. Kukushkin, Appl. Surf. Sci. 92, 350 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    L. M. Sorokin, A. E. Kalmykov, V. N. Bessolov, N. A. Feoktistov, A. V. Osipov, S. A. Kukushkin, and N. V. Veselov, Tech. Phys. Lett. 37 (4), 326 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    K. Hiramatsu, in Advances in Crystal Growth Research, Ed. by K. Sato, Y. Furukawa, and K. Nakajima (Elsevier, Amsterdam, 2001), p. 210.Google Scholar
  21. 21.
    R. S. Telyatnik, A. V. Osipov, and S. A. Kukushkin, Phys. Solid State 57 (1), 162 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    J. Neugebauer, T. Zywietz, M. Scheer, and J. Northrup, Appl. Surf. Sci. 159–160, 355 (2000).CrossRefGoogle Scholar
  23. 23.
    X. Gonze, B. Amadon, P. M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, et al., Comput. Phys. Commun. 180, 2582 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    Silicon Carbide, Ed. by W. J. Choyke, H. M. Matsunami, and G. Pensl (Akademie, Berlin, 1998), Vol. 2.Google Scholar
  25. 25.
    V. G. Dubrovskii, The Theory of Formation of Epitaxial Nanostructures (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  26. 26.
    S. A. Kukushkin, A. V. Osipov, and A. V. Red’kov, Phys. Solid State 56 (12), 2530 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Kumagai, K. Takemoto, J. Kikuchi, T. Hasegawa, H. Murakami, and A. Koukitu, Phys. Status Solidi B 243, 1431 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    A. Koukitu, S. Hama, T. Taki, and H. Seki, Jpn. J. Appl. Phys. 37, 762 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    A. A. Barybin, Electronics and Microelectronics: Physical and Technological Foundations (Fizmatlit, Moscow, 2006) [in Russian].Google Scholar
  30. 30.
    S. A. Kukushkin and A. V. Osipov, Phys.—Usp. 41 (10), 983 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. A. Kukushkin
    • 1
    • 2
    • 3
  • A. V. Osipov
    • 1
    • 3
  • V. N. Bessolov
    • 1
    • 4
  • E. V. Konenkova
    • 1
    • 4
  • V. N. Panteleev
    • 4
  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St.-Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  4. 4.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations