Physics of the Solid State

, Volume 59, Issue 4, pp 838–844 | Cite as

Effect of the cesium and potassium doping of multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics

  • K. R. Izrael’yants
  • A. P. Orlov
  • A. B. Ormont
  • E. G. Chirkova
Fullerenes
  • 27 Downloads

Abstract

The effect of cesium and potassium atoms deposited onto multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics was studied. The current–voltage characteristics of the field electron emission of specimens with cesium or potassium doped multiwalled carbon nanotubes of this type were revealed to retain their linear character in the Fowler–Nordheim coordinates within several orders of magnitude of change in the emission current. The deposition of cesium and potassium atoms was shown to lead to a considerable increase in the emission current and a decrease in the work function φ of studied emitters with multiwalled nanotubes. The work function was established to decrease to φ ~ 3.1 eV at an optimal thickness of coating with cesium atoms and to φ ~ 2.9 eV in the case of doping with potassium atoms. Cesium and potassium deposition conditions optimal for the attainment of a maximum emission current were found.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Musatov, K. R. Izrael’yants, and E. G. Chirkova, Phys. Solid State 56 (4), 839 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    A. L. Musatov, K. R. Izrael’yants, E. G. Chirkova, and A. V. Krestinin, Phys. Solid State 53 (7), 1504 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    D. H. Kim, H. R. Lee, M. W. Lee, J. H. Lee, Y. H. Song, J. G. Jee, and S. Y. Lee, Chem. Phys. Lett. 355, 53 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    B. Ha and C. J. Lee, Appl. Phys. Lett. 90, 023108 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    O. Zhou, R. M. Fleming, D. W. Murphy, C. H. Chen, R. C. Haddon, A. P. Ramirez, and S. H. Glarum, Science (Washington) 263, 1744 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    S. Suzuki and M. Tomita, J. Appl. Phys. 79, 3739 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    L. A. Bol’shov, A. P. Napartovich, A. G. Naumovets, and A. G. Fedorus, Sov. Phys.—Usp. 20 (5), 432 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).ADSCrossRefGoogle Scholar
  9. 9.
    A. B. Ormont, K. R. Izrael’yants, and A. L. Musatov, Phys. Solid State 58 (1), 199 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • K. R. Izrael’yants
    • 1
  • A. P. Orlov
    • 1
  • A. B. Ormont
    • 1
  • E. G. Chirkova
    • 1
  1. 1.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations