Physics of the Solid State

, Volume 59, Issue 4, pp 773–779 | Cite as

Structural heteroepitaxy during topochemical transformation of silicon to silicon carbide

  • V. K. Egorov
  • E. V. Egorov
  • S. A. Kukushkin
  • A. V. Osipov
Phase Transitions


Silicon carbide samples synthesized from silicon by topochemical substitution of atoms are studied by the ion channeling method. The results of the analysis unambiguously demonstrate the occurrence of structural heteroepitaxy. The lattice of synthesized silicon carbide of hexagonal polytype 6H is epitaxially matched in the 〈0001〉 direction with the lattice grating grid array network of an initial substrate silicon in the 〈111〉 direction. The main features of structural self-coupling matching in this epitaxial heterocomposite are revealed. Despite the very large silicon carbide and silicon lattice parameter mismatch, the misfit dislocation density at the interface is low, which is a feature of the topochemical substitution method leading to comparable structures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. C. Feldman, J. W. Mayer, and S. T. Picraux, Material Analysis by Ion Channeling (Academic, New York, 1982).Google Scholar
  2. 2.
    E. T. Shipatov, Ion Channeling (Rostov State Univ., Rostov-on-Don, 1986) [in Russian].Google Scholar
  3. 3.
    High-Energy Ion Beam Analysis of Solids, Ed. by G. Gotz and K. Gartner (Academic, Berlin, 1988).Google Scholar
  4. 4.
    V. K. Egorov, E. V. Egorov, and Yu. M. Mironov, in Proceedings of the 20th International Scientific and Technical Conference “High Technologies in Russian Industry” (Bauman Moscow State Technical University, Moscow, 2015), p. 178.Google Scholar
  5. 5.
    V. K. Egorov, E. V. Egorov, and M. S. Afanas’ev, Nanoinzheneriya, No. 11, 38 (2012).Google Scholar
  6. 6.
    S. A. Kukushkin and A. V. Osipov, J. Appl. Phys. 113, 024909 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56 (8), 1507 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    S. A. Kukushkin and A. V. Osipov, Phys. Solid State 58 (4), 747 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    S. A. Kukushkin and A. V. Osipov, Phys. Solid State 56 (4), 792 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    S. A. Kukushkin, A. V. Luk’yanov, A. V. Osipov, and N. A. Feoktistov, Tech. Phys. Lett. 40 (1), 36 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    R. L. Doolittle, Nucl. Instrum. Methods Phys. Res., Sect. B 9, 344 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    S. A. Kukushkin and A. V. Osipov, Semiconductors 47 (12), 1551 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    J. R. Bird and J. S. Williams, Ion Beams for Material Analysis (Academic, Sidney, 1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. K. Egorov
    • 1
  • E. V. Egorov
    • 1
  • S. A. Kukushkin
    • 2
    • 3
    • 4
    • 5
  • A. V. Osipov
    • 2
    • 3
    • 4
  1. 1.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg Academic University—Nanotechnology Research and Education CenterRussian Academy of SciencesSt. PetersburgRussia
  4. 4.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  5. 5.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations