Physics of the Solid State

, Volume 59, Issue 4, pp 845–850 | Cite as

Acoustodesorption of alkali metals and halogens from single-layer graphene: Simple estimates

  • S. Yu. Davydov


An increase in the thermodesorption probability under deformation wave, i.e., acoustodesorption, was estimated for alkali metal and halogen atom adsorption on single-layer graphene. To this end, first, a simple analytical expression for the adsorption energy is proposed. Second, using the previously developed adsorption M-model, the effect of the time-variable hydrostatic compression–tension of a graphene sheet on the adatom charge and adsorption energy is considered. It is shown that the derivative of the adsorption energy with respect to the strain is an order of magnitude higher for halogens than for alkali metals, and the desorbed atom flux is maximum for iodine desorption. To study the dependence of the adatom charge on the strain, the low-energy approximation (LEA) is also used. In this case, LEA estimates for alkali metals show satisfactory agreement with the results of the M-model. Within the LEA, it is demonstrated that uniaxial and hydrostatic deformations lead to order-of-magnitude identical effects.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Denison, Vac. Sci. Technol. 6, 214 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    C. Krishar and D. Lichtman, Phys. Lett. A 44, 99 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    C. Krishar and D. Lichtman, Jpn. J. Appl. Phys. 13 (Suppl. 2-2), 469 (1974).CrossRefGoogle Scholar
  4. 4.
    S. Yu. Davydov and V. I. Margolin, Poverkhnost, No. 8, 5 (1983).Google Scholar
  5. 5.
    S. Yu. Davydov, Phys. Solid State 53 (12), 2545 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    S.Yu. Davydov, The Adsorption Theory: Method of Model Hamiltonians (St. Petersburg Electrotechnical University “LETI,” St. Petersburg, 2013) [in Russian]. Scholar
  7. 7.
    E. Jahnke, F. Emde, and F. Lösch, Tafeln höherer Funktionen (Teubner, Stuttgart, 1966; Nauka, Moscow, 1977) [in German and in Russian].MATHGoogle Scholar
  8. 8.
    S. Yu. Davydov and G. I. Sabirova, Phys. Solid State 53 (3), 654 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    S. Yu. Davydov and G. I. Sabirova, Tech. Phys. Lett. 37 (6), 515 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, 1996).Google Scholar
  11. 11.
    A Concise Reference Book of Physico-Chemical Quantities, Ed. by K. P. Mishchenko and A. A. Ravdel’ (Khimiya, Leningrad, 1974) [in Russian].Google Scholar
  12. 12.
    K. T. Chan, J. B. Neaton, and M. L. Cohen, Phys. Rev. B: Condens. Matter 77, 235430 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    X. Liu, C. Z. Wang, Y. X. Yao, W. C. Lu, M. Hupalo, and M. C. Tringides, Phys. Rev. B: Condens. Matter 83, 235411 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    J.-H. Parq, J. Yu, Y.-K. Kwon, and G. Kim, Phys. Rev. B: Condens. Matter 82, 193406 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    M. Khamtha, N. A. Cordero, L. M. Molina, J. A. Alonso, and L. A. Girifalco, Phys. Rev. B: Condens. Matter 70, 125422 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    P. V. C. Medeiros, F. de Brito Mota, A. J. S. Mascarenhas, and C. M. C. de Castilho, Nanotechnology 21, 115701 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    D. B. Karki and N. P. Adhikari, Int. J. Mod. Phys. B 28, 1450141 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Freeman, San Francisco, California, 1980; Mir, Moscow, 1983), Vol. 1.Google Scholar
  19. 19.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    S. Yu. Davydov and O. V. Posrednik, Phys. Solid State 57 (8), 1695 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B: Condens. Matter 73, 125411 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys. Rev. B: Condens. Matter 84, 195404 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    B. Wang, Y. Wang, and Y. Liu, Funct. Mater. Lett. 8, 1530001 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    S. Yu. Davydov, Tech. Phys. 61 (7), 1106 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations