Skip to main content
Log in

Acoustodesorption of alkali metals and halogens from single-layer graphene: Simple estimates

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An increase in the thermodesorption probability under deformation wave, i.e., acoustodesorption, was estimated for alkali metal and halogen atom adsorption on single-layer graphene. To this end, first, a simple analytical expression for the adsorption energy is proposed. Second, using the previously developed adsorption M-model, the effect of the time-variable hydrostatic compression–tension of a graphene sheet on the adatom charge and adsorption energy is considered. It is shown that the derivative of the adsorption energy with respect to the strain is an order of magnitude higher for halogens than for alkali metals, and the desorbed atom flux is maximum for iodine desorption. To study the dependence of the adatom charge on the strain, the low-energy approximation (LEA) is also used. In this case, LEA estimates for alkali metals show satisfactory agreement with the results of the M-model. Within the LEA, it is demonstrated that uniaxial and hydrostatic deformations lead to order-of-magnitude identical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Denison, Vac. Sci. Technol. 6, 214 (1969).

    Article  ADS  Google Scholar 

  2. C. Krishar and D. Lichtman, Phys. Lett. A 44, 99 (1973).

    Article  ADS  Google Scholar 

  3. C. Krishar and D. Lichtman, Jpn. J. Appl. Phys. 13 (Suppl. 2-2), 469 (1974).

    Article  Google Scholar 

  4. S. Yu. Davydov and V. I. Margolin, Poverkhnost, No. 8, 5 (1983).

    Google Scholar 

  5. S. Yu. Davydov, Phys. Solid State 53 (12), 2545 (2011).

    Article  ADS  Google Scholar 

  6. S.Yu. Davydov, The Adsorption Theory: Method of Model Hamiltonians (St. Petersburg Electrotechnical University “LETI,” St. Petersburg, 2013) [in Russian]. twirpx.com/file/1596114/.

    Google Scholar 

  7. E. Jahnke, F. Emde, and F. Lösch, Tafeln höherer Funktionen (Teubner, Stuttgart, 1966; Nauka, Moscow, 1977) [in German and in Russian].

    MATH  Google Scholar 

  8. S. Yu. Davydov and G. I. Sabirova, Phys. Solid State 53 (3), 654 (2011).

    Article  ADS  Google Scholar 

  9. S. Yu. Davydov and G. I. Sabirova, Tech. Phys. Lett. 37 (6), 515 (2011).

    Article  ADS  Google Scholar 

  10. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, 1996).

  11. A Concise Reference Book of Physico-Chemical Quantities, Ed. by K. P. Mishchenko and A. A. Ravdel’ (Khimiya, Leningrad, 1974) [in Russian].

  12. K. T. Chan, J. B. Neaton, and M. L. Cohen, Phys. Rev. B: Condens. Matter 77, 235430 (2008).

    Article  ADS  Google Scholar 

  13. X. Liu, C. Z. Wang, Y. X. Yao, W. C. Lu, M. Hupalo, and M. C. Tringides, Phys. Rev. B: Condens. Matter 83, 235411 (2011).

    Article  ADS  Google Scholar 

  14. J.-H. Parq, J. Yu, Y.-K. Kwon, and G. Kim, Phys. Rev. B: Condens. Matter 82, 193406 (2010).

    Article  ADS  Google Scholar 

  15. M. Khamtha, N. A. Cordero, L. M. Molina, J. A. Alonso, and L. A. Girifalco, Phys. Rev. B: Condens. Matter 70, 125422 (2004).

    Article  ADS  Google Scholar 

  16. P. V. C. Medeiros, F. de Brito Mota, A. J. S. Mascarenhas, and C. M. C. de Castilho, Nanotechnology 21, 115701 (2010).

    Article  ADS  Google Scholar 

  17. D. B. Karki and N. P. Adhikari, Int. J. Mod. Phys. B 28, 1450141 (2014).

    Article  ADS  Google Scholar 

  18. W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Freeman, San Francisco, California, 1980; Mir, Moscow, 1983), Vol. 1.

    Google Scholar 

  19. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  20. S. Yu. Davydov and O. V. Posrednik, Phys. Solid State 57 (8), 1695 (2015).

    Article  ADS  Google Scholar 

  21. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B: Condens. Matter 73, 125411 (2006).

    Article  ADS  Google Scholar 

  22. F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys. Rev. B: Condens. Matter 84, 195404 (2011).

    Article  ADS  Google Scholar 

  23. B. Wang, Y. Wang, and Y. Liu, Funct. Mater. Lett. 8, 1530001 (2015).

    Article  ADS  Google Scholar 

  24. S. Yu. Davydov, Tech. Phys. 61 (7), 1106 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Additional information

Original Russian Text © S.Yu. Davydov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 4, pp. 825–830.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. Acoustodesorption of alkali metals and halogens from single-layer graphene: Simple estimates. Phys. Solid State 59, 845–850 (2017). https://doi.org/10.1134/S1063783417040059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417040059

Navigation