Advertisement

Physics of the Solid State

, Volume 59, Issue 4, pp 752–757 | Cite as

Inelastic intermolecular exchange of vibrational quanta and relaxation of vibrationally excited states in binary solid systems

  • A. R. Aliev
  • I. R. Akhmedov
  • M. G. Kakagasanov
  • Z. A. Aliev
  • M. M. Gafurov
  • K. Sh. Rabadanov
  • A. M. Amirov
Optical Properties

Abstract

The processes of molecular relaxation in the binary nitrate–perchlorate solid systems LiNO3–LiClO4, NaNO3–NaClO4, and KNO3–KClO4 have been investigated using Raman spectroscopy. It has been found that the relaxation time of the ν1(A) vibration of the NO3 - anion in the binary solid system is shorter than that in the pure metal nitrates. It has been shown that an increase in the relaxation rate is caused by the existence of an additional mechanism of relaxation of vibrationally excited states of the nitrate ion in the system. This mechanism is associated with the excitation of a vibration of another anion (ClO4 -), as well as with the “creation” of a lattice phonon. It has been established that the condition for the realization of the relaxation mechanism is that the difference between the frequencies of the aforementioned vibrations should correspond to the range of sufficiently high densities of states of the phonon spectrum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. K. Voronko, A. A. Sobol, and V. E. Shukshin, Phys. Solid State 49 (10), 1963 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Rakov, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 27, 111 (1964).Google Scholar
  3. 3.
    K. A. Valiev and E. N. Ivanov, Sov. Phys.—Usp. 16 (1), 1 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    V. E. Pogorelov, A. I. Lizengevich, I. I. Kondilenko, and G. P. Buyan, Sov. Phys.—Usp. 22 (4), 270 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Kirillov, in Dynamical Properties of Molecules and Condensed Systems, Ed. by A. N. Lazarev (Nauka, Leningrad, 1988), p. 190 [in Russian].Google Scholar
  6. 6.
    D. W. Oxtoby, J. Chem. Phys. 70, 2605 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    K. A. Valiev, Sov. Phys. JETP 13, 1287 (1961).MathSciNetGoogle Scholar
  8. 8.
    K. A. Valiev, Opt. Spektrosk. 11, 465 (1961).Google Scholar
  9. 9.
    K. Sarka and S. A. Kirillov, Ukr. Fiz. Zh. 26, 1118 (1981).Google Scholar
  10. 10.
    M. A. Ivanov, L. B. Kvashina, and M. A. Krivoglaz, Sov. Phys. Solid State 7, 1652 (1965).Google Scholar
  11. 11.
    M. M. Gafurov and A. R. Aliev, Rasplavy, No. 2, 41 (2000).Google Scholar
  12. 12.
    A. R. Aliev and M. M. Gafurov, Russ. J. Phys. Chem. A 75 (3), 418 (2001).Google Scholar
  13. 13.
    A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, Chem. Phys. Lett. 359, 262 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    E. Yu. Tonkov, High-Pressure Phase Transformations (Nauka, Moscow, 1983; Gordon and Breach, London, 1992).Google Scholar
  15. 15.
    V. N. Belomestnykh and A. A. Botaki, Sov. Phys. Solid State 32 (9), 1643 (1990).Google Scholar
  16. 16.
    V. N. Belomestnykh and A. A. Botaki, Sov. Phys. Solid State 34 (1), 137 (1992).Google Scholar
  17. 17.
    Chemical Encyclopedia (Sovetskaya Entsiklopediya, Moscow, 1990–1992), Vol. 2. pp. 288, 608; Vol. 3, pp. 183−184.Google Scholar
  18. 18.
    S. V. Baryshnikov, E. V. Charnaya, A. Yu. Milinskii, E. V. Stukova, C. Tien, and D. Michel, Phys. Solid State 52 (2), 392 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    S. V. Baryshnikov, E. V. Charnaya, A. Yu. Milinskii, Yu. A. Shatskaya, and D. Michel, Phys. Solid State 54 (3), 636 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    S. V. Baryshnikov, E. V. Charnaya, A. Yu. Milinskii, and Yu. V. Patrushev, Phys. Solid State 55 (12), 2566 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    D. V. Korabel’nikov and Yu. N. Zhuravlev, Phys. Solid State 55 (8), 1765 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    V. D. Prisyazhnyi and V. I. Snezhkov, Ukr. Khim. Zh. 47, 230 (1981).Google Scholar
  23. 23.
    T. Yu. Drobchik, R. Sh. Khaliullin, and V. A. Nevostruev, Polzunovskii Vestn., No. 2, 92 (2006).Google Scholar
  24. 24.
    M. M. Markowitz, J. Phys. Chem. 62, 827 (1958).CrossRefGoogle Scholar
  25. 25.
    M. H. Brooker and G. N. Papatheodorou, in Advances in Molten Salt Chemistry, Ed. by G. Mamantov (Elsevier, Amsterdam, 1983), Vol. 5, p. 26.Google Scholar
  26. 26.
    K. W. F. Kohlrausch, Raman Specktren (Becker, Leipzig, 1943; Inostrannaya Literatura, Moscow, 1952) [in German and in Russian].Google Scholar
  27. 27.
    L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules (Nauka, Moscow, 1970) [in Russian].Google Scholar
  28. 28.
    The Aldrich Library of Infrared Spectra, Ed. by C. J. Pouchert, 2nd ed. (Aldrich Chemical Company, St. Louis, Missouri, United States, 1978), p. 292.Google Scholar
  29. 29.
    V. N. Belomestnykh and E. P. Tesleva, Izv. Tomsk. Politekh. Univ 307 (6), 11 (2004).Google Scholar
  30. 30.
    V. N. Belomestnykh and E. G. Soboleva, Fundam. Probl. Sovrem. Materialoved. 6 (1), 112 (2009).Google Scholar
  31. 31.
    D. W. James and W. H. Leong, J. Chem. Phys. 49, 5089 (1968).ADSCrossRefGoogle Scholar
  32. 32.
    W. H. Leong and D. W. James, Aust. J. Chem. 22, 499 (1969).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. R. Aliev
    • 1
    • 2
  • I. R. Akhmedov
    • 1
    • 3
  • M. G. Kakagasanov
    • 1
    • 3
  • Z. A. Aliev
    • 1
  • M. M. Gafurov
    • 1
    • 3
  • K. Sh. Rabadanov
    • 2
    • 3
  • A. M. Amirov
    • 3
  1. 1.Amirkhanov Institute of Physics, Dagestan Scientific CentreRussian Academy of SciencesMakhachkala, Republic of DagestanRussia
  2. 2.Dagestan State UniversityMakhachkala, Republic of DagestanRussia
  3. 3.Analytical Center of Collective Use, Dagestan Scientific CentreRussian Academy of SciencesMakhachkala, Republic of DagestanRussia

Personalised recommendations