Skip to main content
Log in

S-shaped current–voltage characteristics of polymer composite films containing graphene and graphene oxide particles

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The resistive switching effects in composite films containing polyfunctional polymers, such as derivatives of carbazole (PVK), fluorene (PFD), and polyvinyl chloride (PVC), and also graphene particles (Gr) and graphene oxide (GO), the concentration of which in the polymer matrices varied in the range from 1 to 3 wt % corresponding to the percolation threshold in such systems, have been studied. The analysis of the elemental composition of the investigated composites by means of X-ray photoelectron spectroscopy have shown that the oxidation degree of Gr in GO is about 9 to 10%. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK (PFD; PVC): Gr (GO)/ITO/PET structures, where ITO is indium tin oxide, and PET is poly(ethylene terephthalate), with the switching time, t, in the range from 1 to 30 μs. The observed effects are attributed to the influence of redox reactions taking place on the Gr and GO particles enclosed in the polymer matrix, and the additional influence of thermomechanical properties of the polymer constituent of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Skotheim and J. R. Reynolds, Handbook of Conducting Polymers, 3rd ed. (CRC, New York, 2007), p. 620.

    Google Scholar 

  2. C. Wu, F. Li, T. Guo, and T. W. Kim, Org. Electron. 13, 178 (2012).

    Article  Google Scholar 

  3. W.-P. Lin, S.-J. Liu, T. Gong, Q. Zhao, and W. Huang, Adv. Mater. (Weinheim) 26, 570 (2014).

    Article  Google Scholar 

  4. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Polymer 52, 5 (2011).

    Article  Google Scholar 

  5. P. S. Krylov, A. S. Berestennikov, A. N. Aleshin, A. S. Komolov, I. P. Shcherbakov, V. N. Petrov, and I. N. Trapeznikova, Phys. Solid State 57 (8), 1678 (2015).

    Article  ADS  Google Scholar 

  6. A. N. Aleshin, P. S. Krylov, A. S. Berestennikov, I. P. Shcherbakov, V. N. Petrov, V. V. Kondratiev, and S. N. Eliseeva, Synth. Met. 217, 7 (2016).

    Article  Google Scholar 

  7. A. N. Aleshin, I. P. Shcherbakov, A. S. Komolov, V. N. Petrov, and I. N. Trapeznikova, Org. Electron. 16, 186 (2015).

    Article  Google Scholar 

  8. A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, J. Phys. Chem. C 115, 17009 (2011).

    Article  Google Scholar 

  9. S. A. Fefelov, L. P. Kazakova, S. A. Kozyukhin, K. D. Tsendin, D. Arsova, and V. Pamukchieva, Tech. Phys. 59 (4), 546 (2014).

    Article  Google Scholar 

  10. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. Bomben, in Handbook of X-Ray Photoelectron Spectroscopy, Ed. by J. Chastain, 2nd ed. (Perkin–Elmer, Eden Prairie, Minnesota, United States, 1992), p. 253.

  11. A. S. Komolov, K. Schaumburg, P. J. Møller, and V. V. Monakhov, Appl. Surf. Sci. 142, 591 (1999).

    Article  ADS  Google Scholar 

  12. B. K. Ridley, Proc. Phys. Soc. 32, 954 (1963).

    Article  ADS  Google Scholar 

  13. S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

    Article  ADS  Google Scholar 

  14. E. A. Lebedev, E. L. Alexandrova, and A. N. Aleshin, Phys. Solid State 51 (1), 208 (2009).

    Article  ADS  Google Scholar 

  15. E. L. Alexandrova, E. A. Lebedev, N. N. Konstantinova, and A. N. Aleshin, Phys. Solid State 52 (2), 422 (2010).

    Article  ADS  Google Scholar 

  16. K. D. Tsendin, E. A. Lebedev, and A. B. Shmel’kin, Phys. Solid State 47 (3), 439 (2005).

    Article  ADS  Google Scholar 

  17. B. Yu. Lototskii and L. K. Chirkin, Sov. Phys. Solid State 8 (6), 1564 (1966).

    Google Scholar 

  18. A. F. Volkov and Sh. M. Kogan, Sov. Phys.—Usp. 11, 881 (1968).

    Article  ADS  Google Scholar 

  19. B. Ellis and R. Smith, Polymers: A Property Database, 2nd ed. (CRC, Boca Raton, Florida, 2008).

    Google Scholar 

  20. S. Yanmei, A. Chunpeng, L. Junguo, L. Lei, W. Dianzhong, and B. Xuduo, Thin Solid Films 598, 293 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Aleshin.

Additional information

Original Russian Text © P.S. Krylov, A.S. Berestennikov, S.A. Fefelov, A.S. Komolov, A.N. Aleshin, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 12, pp. 2476–2481.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, P.S., Berestennikov, A.S., Fefelov, S.A. et al. S-shaped current–voltage characteristics of polymer composite films containing graphene and graphene oxide particles. Phys. Solid State 58, 2567–2573 (2016). https://doi.org/10.1134/S1063783416120155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416120155

Navigation