Skip to main content
Log in

Ferromagnetic resonance in interacting magnetic microstrips

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of the micromagnetic simulation of forced oscillations of the magnetization in a system of two interacting microstrips located at an angle to each other have been presented. The ferromagnetic resonance spectra and the mode composition of resonant oscillations of the system have been investigated under the conditions of magnetostatic and exchange interactions between the microstrips. It has been shown that the magnetostatic interaction leads to the possibility of the excitation of in-phase and out-of-phase coupled oscillations of the magnetization of the microstrips. In the systems of exchange-coupled microstrips, there are intense resonances due to oscillations of the domain walls. The transformation of the ferromagnetic resonance spectrum and the change in the mode composition of resonant oscillations in different equilibrium configurations of the magnetization of the system have been discussed, as well as the conditions for the excitation of oscillations of different types depending on the direction of the microwave magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Yu. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, J. Appl. Phys. 85 (8), 5828 (1999).

    Article  ADS  Google Scholar 

  2. J.-G. Zhu, Proc. IEEE 96 (11), 1786 (2008).

    Article  Google Scholar 

  3. R. L. Stamps, S. Breitkreutz, J. Akerman, A. V. Chumak, Y. Otani, G. E. W. Bauer, J.-U. Thiele, M. Bowen, S. A. Majetich, M. Klaui, I. L. Prejbeanu, B. Dieny, N. M. Dempsey, and B. Hillebrands, J. Phys. D: Appl. Phys. 47, 333001 (2014).

    Article  ADS  Google Scholar 

  4. A. A. Fraerman, Phys.—Usp. 55 (12), 1255 (2012).

    Article  ADS  Google Scholar 

  5. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebibv, L. Manin-Ferlazzo, L. Couraud, and H. Launois, Appl. Surf. Sci. 164, 111 (2000).

    Article  ADS  Google Scholar 

  6. W. M. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (Plenum, New York, 1988; Mir, Moscow, 1990).

    Google Scholar 

  7. M. Zhu and R. D. McMichael, J. Appl. Phys. 109 (4), 043904 (2011).

    Article  ADS  Google Scholar 

  8. Y. Nozaki, K. Tateishi, S. Taharazako, S. Yoshimura, and K. Matsuyama, Appl. Phys. Lett. 92, 161903 (2008).

    Article  ADS  Google Scholar 

  9. X. H. Han, R. L. Liu, Q. F. Liu, J. B. Wang, T. Wang, and F. S. Li, Phys. B (Amsterdam, Neth.) 405, 1172 (2010).

    Article  ADS  Google Scholar 

  10. A. O. Adeyeye and S. Jain, J. Appl. Phys. 109 (7), 07B903 (2011).

    Article  Google Scholar 

  11. V. A. Zhuravlev and A. A. Oshlakov, Phys. Solid State 43 (11), 2110 (2001).

    Article  ADS  Google Scholar 

  12. V. B. Guseva, A. F. Zatsepin, V. A. Vazhenin, B. Schmidt, N. V. Gavrilov, and S. O. Cholakh, Phys. Solid State 47 (4), 674 (2005).

    Article  ADS  Google Scholar 

  13. R. B. Morgunov, A. I. Dmitriev, G. I. Dzhardimalieva, A. D. Pomogailo, A. S. Rozenberg, Y. Tanimoto, M. Leonowicz, and E. Sowka, Phys. Solid State 49 (8), 1507 (2007).

    Article  ADS  Google Scholar 

  14. R. V. Gorev, V. L. Mironov, and E. V. Skorokhodov, J. Surf. Invest. 10 (2), 298 (2016).

    Article  Google Scholar 

  15. R. Adam, Y. Khivintsev, R. Hertel, C. M. Schneider, A. Hutchison, R. Camely, and Z. Celinski, J. Appl. Phys. 101 (9), 09F516 (2007).

    Article  Google Scholar 

  16. M. P. Wismayer, B. W. Southern, X. L. Fan, Y. S. Gui, C.-M. Hu, and R. E. Camley, Phys. Rev. B: Condens. Matter 85 (6), 064411 (2012).

    Article  ADS  Google Scholar 

  17. V. Flovik, F. Macià, J.M. Hernàndez, R. Brucas, M. Hanson, and E. Wahlström, Phys. Rev. B: Condens. Matter 92 (10), 104406 (2015).

  18. B. K. Kuanr, R. Lopusnik, L. M. Malkinski, M. Wenger, M. Yu, D. Scherer II, R. Camley, and Z. Celinski, J. Appl. Phys. 103 (7), 07C508 (2008).

    Google Scholar 

  19. L. Malkinski, M. Yu, A. Y. Vovk, D. Scherer, L. Spinu, W. Zhou, S. Whittenburg, Z. Davis, and J.-S. Jung, J. Appl. Phys. 101 (9), 09J110 (2007).

    Article  Google Scholar 

  20. M. J. Donahue and D. G. Porter, Interagency Report NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, Maryland, United States). http://math.nist.gov/oommf/.

  21. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Fizmatlit, Moscow, 1994; CRC Press, Boca Raton, Florida, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Gorev.

Additional information

Original Russian Text © R.V. Gorev, E.V. Skorokhodov, V.L. Mironov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 11, pp. 2135–2139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorev, R.V., Skorokhodov, E.V. & Mironov, V.L. Ferromagnetic resonance in interacting magnetic microstrips. Phys. Solid State 58, 2212–2217 (2016). https://doi.org/10.1134/S1063783416110111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416110111

Navigation