Skip to main content
Log in

Photoluminescence of the nanosized xerogel Zn2SiO4:Mn2+ in pores of anodic alumina

  • Impurity Centers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The photoluminescence properties of a composite material prepared by the introduction of the nanosized phosphor Zn2SiO4:Mn2+ into porous anodic alumina have been investigated. Scanning electron microscopy studies have revealed that Zn2SiO4:Mn2+ particles are uniformly distributed in 70% of the volume of the pore channels. The samples exhibit an intense luminescence in the range of 2.3–3.0 eV, which corresponds to the emission of different types of F centers in alumina. After the formation of Zn2SiO4:Mn2+ nanoparticles in the pores, an intense photoluminescence band is observed at 2.4 eV due to the 4 T 16 A 1 electronic transition within the 3d shell of the Mn2+ activator ion. It has been found that the maximum of the photoluminescence of Zn2SiO4:Mn2+ xerogel nanoparticles located in the porous matrix is shifted to higher energies, and the luminescence decay time decreases significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shingubara, J. Nanopart. Res. 5, 17 (2003).

    Article  Google Scholar 

  2. A. V. Atrashchenko, A. A. Krasilin, I. S. Kuchuk, E. M. Aryslanova, S. A. Chivilikhin, and P. A. Belov, Nanosist.: Fiz., Khim., Mat. 3 (3), 31 (2012).

    Google Scholar 

  3. N. V. Gaponenko, V. S. Kortov, T. I. Orekhovskaya, I. A. Nikolaenko, V. A. Pustovarov, S. V. Zvonarev, A. I. Slesarev, and S. Ya. Prislopskii, Semiconductors 45 (7), 950 (2011).

    Article  ADS  Google Scholar 

  4. N. V. Gaponenko, V. S. Kortov, N. P. Smirnova, T. I. Orekhovskaya, I. A. Nikolaenko, V. A. Pustovarov, S. V. Zvonarev, A. I. Slesarev, O. P. Linnik, M. A. Zhukovskii, and V. E. Borisenko, Microelectron. Eng. 90, 131 (2012).

    Article  Google Scholar 

  5. K. A. Petrovykh, A. A. Rempel, V. S. Kortov, and E. A. Buntov, Inorg. Mater. 51 (2), 152 (2015).

    Article  Google Scholar 

  6. K. A. Petrovykh, V. S. Kortov, and A. A. Rempel, J. Phys.: Conf. Ser. 552, 012043 (2014).

    ADS  Google Scholar 

  7. A. Morell and N. El. Khiati, J. Electrochem. Soc. 140, 2019 (1993).

    Article  Google Scholar 

  8. C. Feldmann, T. Justel, C. R. Ronda, and P. J. Schmidt, Adv. Funct. Mater. 13, 511 (2003).

    Article  Google Scholar 

  9. J.-P. Boilot, T. Gacoin, and S. Perruchas, Chimie 13, 186 (2010).

    Article  Google Scholar 

  10. V. S. Kortov, I. I. Mil’man, S. V. Nikiforov, and V. E. Pelenev, Phys. Solid State 45 (7), 1260 (2003).

    Article  ADS  Google Scholar 

  11. S. V. Solov’ev, I. I. Milman, and A. I. Syurdo, Phys. Solid State 54 (4), 726 (2012).

    Article  ADS  Google Scholar 

  12. K. H. Klaska, J. C. Eck, and D. Pohl, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 34, 387 (1978).

    Google Scholar 

  13. A. L. N. Stevels and A. T. Vink, J. Lumin. 8, 443 (1974).

    Article  Google Scholar 

  14. M. K. Kretov, I. M. Iskandarova, B. V. Potapkin, A. V. Scherbinin, A. M. Srivastana, and N. F. Stepanov, J. Lumin. 132, 2143 (2012).

    Article  Google Scholar 

  15. D. J. Robbins, E. E. Mendes, E. A. Giess, and I. F. Chang, J. Electrochem. Soc. 131, 141 (1984).

    Article  Google Scholar 

  16. S. Zh. Karazhanov, P. Ravindran, H. Fjellvag, and B. G. Stevenson, J. Appl. Phys. 106 (12), 123701 (2009).

    Article  ADS  Google Scholar 

  17. K.-S. Sohn, B. Cho, and H. D. Park, Mater. Lett. 41, 303 (1999).

    Article  Google Scholar 

  18. Y. Hao and Y. Wang, J. Lumin. 122, 1006 (2007).

  19. T. H. Cho and H. J. Chang, Ceram. Int. 29, 611 (2003).

    Article  Google Scholar 

  20. A. A. Lutich, S. V. Gaponenko, N. V. Gaponenko, I. S. Molchan, V. A. Sokol, and V. Parkhutik, Nano Lett. 4, 1755 (2004).

    Article  ADS  Google Scholar 

  21. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Science (Washington) 308, 1296 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Petrovykh.

Additional information

Original Russian Text © K.A. Petrovykh, V.S. Kortov, N.V. Gaponenko, A.A. Rempel’, M.V. Rudenko, L.S. Khoroshko, S.S. Voznesenskii, A.A. Sergeev, V.A. Pustovarov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 10, pp. 1989–1994.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovykh, K.A., Kortov, V.S., Gaponenko, N.V. et al. Photoluminescence of the nanosized xerogel Zn2SiO4:Mn2+ in pores of anodic alumina. Phys. Solid State 58, 2062–2067 (2016). https://doi.org/10.1134/S1063783416100280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416100280

Navigation