Skip to main content
Log in

Electric field induced by vortex transport in percolation superconductors

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of fractal normal phase clusters on the electric field induced by the flow and creep of the magnetic flux in percolation superconductors has been considered. The current–voltage characteristics of such superconductors with allowance for the influence of the fractal dimension of cluster boundaries and the pinning barrier height have been obtained. The vortex dynamics in percolation superconductors with a fractal cluster structure in a viscous flow of the magnetic flux, the Anderson–Kim creep, and the collective flux creep has been analyzed. It has been discovered that the fractality of normal phase clusters reduces the electric field arising in the initial stage of the resistive transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Eisterer, S. H. Moon, and H. C. Freyhardt, Supercond. Sci. Technol. 29, 060301 (2016).

    Article  ADS  Google Scholar 

  2. C. Senatore, C. Barth, M. Bonura, M. Kulich, and G. Mondonico, Supercond. Sci. Technol. 29, 014002 (2016).

    Article  ADS  Google Scholar 

  3. D. Abraimov, A. Ballarino, C. Barth, L. Bottura, R. Dietrich, A. Francis, J. Jaroszynski, G. S. Majkic, J. McCallister, A. Polyanskii, L. Rossi, A. Rutt, M. Santos, K. Schlenga, V. Selvamanickam, et al., Supercond. Sci. Technol. 28, 114007 (2015).

    Article  ADS  Google Scholar 

  4. A. K. Jha, K. Matsumoto, T. Horide, S. Saini, P. Mele, A. Ichinose, Y. Yoshida, and S. Awaji, Supercond. Sci. Technol. 28, 114004 (2015).

    Article  ADS  Google Scholar 

  5. T. Matsushita, Flux Pinning in Superconductors (Springer-Verlag, Berlin, 2007).

  6. Yu. I. Kuzmin, Phys. Lett. A 267, 66 (2000).

    Article  ADS  Google Scholar 

  7. Yu. I. Kuzmin, Phys. Rev. B: Condens. Matter 64, 094519 (2001).

    Article  ADS  Google Scholar 

  8. Yu. I. Kuzmin, IEEE Trans. Appl. Supercond. 15, 3759 (2005).

    Article  Google Scholar 

  9. P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).

    Article  ADS  Google Scholar 

  10. P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).

    Article  ADS  Google Scholar 

  11. M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Phys. Rev. Lett. 63, 2303 (1989).

    Article  ADS  Google Scholar 

  12. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  13. Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988).

    Article  ADS  Google Scholar 

  14. Yu. I. Kuzmin, J. Low Temp. Phys. 130, 261 (2003).

    Article  ADS  Google Scholar 

  15. Yu. I. Kuzmin, in New Frontiers in Superconductivity Research, Ed. by B. P. Martins (Nova Science, New York, 2006), p. 45.

  16. S. Kang, A. Goyal, J. Li, A. A. Gapud, P. M. Martin, L. Heatherly, J. R. Thompson, D. K. Christen, F. A. List, M. Paranthaman, and D. F. Lee, Science (Washington) 311, 1911 (2006).

    Article  ADS  Google Scholar 

  17. H. Yamasaki and K. Endo, Supercond. Sci. Technol. 27, 025014 (2014).

    Article  ADS  Google Scholar 

  18. Y. Jia, M. LeRoux, D. Miller, J. G. Wen, W. K. Kwok, U. Welp, M. W. Rupich, X. Li, S. Sathyamurthy, S. Fleshler, A. P. Malozemoff, A. Kayani, O. Ayala-Valenzuela, and L. Civale, Appl. Phys. Lett. 103, 122601 (2013).

    Article  ADS  Google Scholar 

  19. Y. Furuki, T. Sueyoshi, T. Kai, Y. Iwanaga, T. Fujiyoshi, and N. Ishikawa, Physica C (Amsterdam) 518, 58 (2015).

    Article  ADS  Google Scholar 

  20. M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).

    Article  ADS  Google Scholar 

  21. Yu. I. Kuzmin, Phys. Lett. A 300, 510 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  22. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, California, United States, 1982).

    MATH  Google Scholar 

  23. M. Prester, Phys. Rev. B: Condens. Matter 60, 3100 (1999).

    Article  ADS  Google Scholar 

  24. D. A. Balaev, I. L. Belozerova, D. M. Gokhfeld, L. V. Kashkina, Yu. I. Kuzmin, K. R. Migel, M. I. Petrov, S. I. Popkov, and K. A. Shaikhutdinov, Phys. Solid State 48 (2), 207 (2006).

    Article  ADS  Google Scholar 

  25. K. A. Shaykhutdinov, D. A. Balaev, D. A. Gokhfeld, Yu. I. Kuzmin, S. I. Popkov, and M. I. Petrov, Physica C (Amsterdam) 435, 19 (2006).

    Article  ADS  Google Scholar 

  26. Yu. I. Kuzmin, Phys. Lett. A 281, 39 (2001).

    Article  ADS  Google Scholar 

  27. Yu. I. Kuzmin, Phys. Solid State 43 (7), 1199 (2001).

    Article  ADS  Google Scholar 

  28. K. Yamafuji and T. Kiss, Physica C (Amsterdam) 258, 197 (1996).

    Article  ADS  Google Scholar 

  29. D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B: Condens. Matter 43, 130 (1991).

    Article  ADS  Google Scholar 

  30. K. Yamafuji and T. Kiss, Physica C (Amsterdam) 290, 9 (1997).

    Article  ADS  Google Scholar 

  31. Yu. I. Kuzmin, Tech. Phys. Lett. 40 (9), 769 (2014).

    Article  ADS  Google Scholar 

  32. Yu. I. Kuzmin, Tech. Phys. Lett. 36 (5), 400 (2010).

    Article  ADS  Google Scholar 

  33. A. N. Lykov, Low Temp. Phys. 40 (9), 773 (2014).

    Article  ADS  Google Scholar 

  34. J. R. Thompson, Y. R. Sun, and D. K. Christen, Phys. Rev. B: Condens. Matter 49, 13287 (1994).

    Article  ADS  Google Scholar 

  35. V. M. Vinokur, M. V. Feigel’man, V. B. Geshkenbein, and A. I. Larkin, Phys. Rev. Lett. 65, 259 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Kuz’min.

Additional information

Original Russian Text © Yu.I. Kuz’min, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 10, pp. 1879–1885.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’min, Y.I. Electric field induced by vortex transport in percolation superconductors. Phys. Solid State 58, 1945–1951 (2016). https://doi.org/10.1134/S1063783416100218

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416100218

Navigation