Skip to main content
Log in

Statistical analysis of the strength of ultra-oriented ultra-high-molecular-weight polyethylene film filaments in the framework of the Weibull model

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A statistical analysis of the distribution of the tensile strength σ of ultra-oriented ultra-high-molecular-weight polyethylene (UHMWPE) film filaments has been performed in the framework of the Weibull model using the results obtained from a large number (50) of measurements. The UHMWPE film filaments have been produced by means of high-temperature multistage zone drawing of xerogels prepared from 1.5% UHMWPE solutions in decalin. The Weibull modulus has been determined for this type of materials. It has been shown that, for the ultimate draw ratio λ = 120, the average tensile strength is equal to 4.7 GPa, which is significantly higher than the tensile strength σ = 3.5 GPa for commercial gel-spun UHMWPE fibers manufactured by the DSM Company (The Netherlands) and the Honeywell International Incorporation (United States). It has been demonstrated that, for 20% of the specimens thus prepared, the tensile strength reaches record-high values σ = 5.2–5.9 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Marikhin and L. P. Myasnikova, in Oriented Polymer Materials, Ed. by S. Fakirov (Hüthig and Wepf, Zug, Switzerland, 1996), p. 38.

  2. A. Ya. Malkin, A. A. Askadskii, and V. V. Kovriga, Methods of Measurement of Mechanical Properties of Polymers (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  3. F. Tanaka, T. Okabe, H. Okuda, I. A. Kinloch, and R. J. Young, Composites, Part A 57, 88 (2014).

    Article  Google Scholar 

  4. L. G. Baikova, T. I. Pesina, M. F. Kireenko, L. V. Tikhonova, and C. R. Kurkjian, Tech. Phys. 60 (6), 869 (2015).

    Article  Google Scholar 

  5. D. M. Wilson, J. Mater. Sci. 32, 2535 (1997).

    Article  ADS  Google Scholar 

  6. G. Sun, J. H. L. Pang, J. Zhou, Y. Zhang, Z. Zhan, and L. Zheng, Appl. Phys. Lett. 101 (6), 131905 (2012).

    Article  ADS  Google Scholar 

  7. W. Weibull, J. Appl. Mech. 18, 293 (1951).

    Google Scholar 

  8. J. D. Sullivan and P. H. Lauzon, J. Mater. Sci. Lett. 5, 1245 (1986).

    Article  Google Scholar 

  9. M. R. Gurvich, A. T. Dibenedetto, and A. Pegoretti, J. Mater. Sci. 32, 3711 (1997).

    Article  ADS  Google Scholar 

  10. N. M. Pugno and R. S. Ruoff, J. Appl. Phys. 99, 024301 (2006).

    Article  ADS  Google Scholar 

  11. S. van der Zwaag, J. Test. Eval. 17 (2), 292 (1989).

    Google Scholar 

  12. B. Bergman, J. Mater. Sci. Lett. 3, 689 (1984).

    Article  Google Scholar 

  13. K. Trustrum and A. de S. Jayatilaka, J. Mater. Sci. 14, 1080 (1979).

    Article  ADS  Google Scholar 

  14. C. A. Klein, J. Appl. Phys. 101 (12), 124909 (2007).

    Article  ADS  Google Scholar 

  15. I. M. de Rosa, J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini, Compos. Sci. Technol. 70, 116 (2010).

    Article  Google Scholar 

  16. Y. Zhang and X. Wang, J. Mater. Sci. 37, 1401 (2002).

    Article  ADS  Google Scholar 

  17. H. F. Wu and A. N. Netravali, J. Mater. Sci. 27, 3318 (1992).

    Article  ADS  Google Scholar 

  18. Z. P. Bazant, J.-L. Le, and M. Z. Bazant, Proc. Acad. Sci. USA 106, 11484 (2009).

    Article  ADS  Google Scholar 

  19. Z. P. Bazant and S.-D. Pang, Proc. Acad. Sci. USA 103, 9434 (2006).

    Article  ADS  Google Scholar 

  20. A. H. Barber, R. Andrews, L. S. Schadler, and H. D. Wagner, Appl. Phys. Lett. 87 (20), 203106 (2005).

    Article  ADS  Google Scholar 

  21. A. Roy, S. Chakraborty, S. P. Kundu, R. K. Basak, S. B. Majumber, and B. Adhikari, Bioresour. Technol. 107, 222 (2012).

    Article  Google Scholar 

  22. A. de S. Jayatilaka and K. Trustrum, J. Mater. Sci. 12, 1426 (1977).

    Article  ADS  Google Scholar 

  23. V. A. Marikhin, L. P. Myasnikova, and Z. Pel’tsbauer, Vysokomol. Soedin., Ser. A 23, 2108 (1981).

    Google Scholar 

  24. V. A. Marikhin, L. P. Myasnikova, and Z. Pel’tsbauer, Vysokomol. Soedin., Ser. B 24, 437 (1982).

    Google Scholar 

  25. N. A. Pertsev, V. A. Marikhin, L. P. Myasnikova, and Z. Pel’tsbauer, Vysokomol. Soedin., Ser. A 27, 1438 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Marikhin.

Additional information

Original Russian Text © Yu.M. Boiko, V.A. Marikhin, L.P. Myasnikova, O.A. Moskalyuk, E.I. Radovanova, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 10, pp. 2065–2068.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boiko, Y.M., Marikhin, V.A., Myasnikova, L.P. et al. Statistical analysis of the strength of ultra-oriented ultra-high-molecular-weight polyethylene film filaments in the framework of the Weibull model. Phys. Solid State 58, 2141–2144 (2016). https://doi.org/10.1134/S1063783416100103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416100103

Navigation