Skip to main content
Log in

Orientational transitions in antiferromagnetic liquid crystals

  • Liquid Crystals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The orientational phases in an antiferromagnetic liquid crystal (ferronematic) based on the nematic liquid crystal with the negative anisotropy of diamagnetic susceptibility are studied in the framework of the continuum theory. The ferronematic was assumed to be compensated; i.e., in zero field, impurity ferroparticles with the magnetic moments directed parallel and antiparallel to the director are equiprobably distributed in it. It is established that under the action of a magnetic field the ferronematic undergoes orientational transitions compensated (antiferromagnetic) phase–non-uniform phase–saturation (ferrimagnetic) phase. The analytical expressions for threshold fields of the transitions as functions of material parameters are obtained. It is shown that with increasing magnetic impurity segregation parameter, the threshold fields of the transitions significantly decrease. The bifurcation diagram of the ferronematic orientational phases is built in terms of the energy of anchoring of magnetic particles with the liquid-crystal matrix and magnetic field. It is established that the Freedericksz transition is the second-order phase transition, while the transition to the saturation state can be second- or first-order. In the latter case, the suspension exhibits orientational bistability. The orientational and magnetooptical properties of the ferronematic in different applied magnetic fields are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. A. Garbovskiy and A. V. Glushchenko, Solid State Phys. 62, 1 (2010).

    Google Scholar 

  2. O. Buluy, S. Nepijko, V. Reshetnyak, E. Ouskova, V. Zadorozhnii, A.Leonhardt, M. Ritschel, G. Schönhense, and Yu. Reznikov, Soft Matter 7, 644 (2011).

    Article  ADS  Google Scholar 

  3. S. M. Shelestiuk, V. Yu. Reshetnyak, and T. J. Sluckin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83, 041705 (2011).

    Article  ADS  Google Scholar 

  4. N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, Soft Matter 7, 4742 (2011).

    Article  ADS  Google Scholar 

  5. Yu. Garbovskiy, J. R. Baptist, J. Thompson, T. Hunter, J. H. Lim, Seong Gi Min, J. B. Wiley, L. M. Malkinski, A. Glushchenko, and Z. Celinski, Appl. Phys. Lett. 101, 181109 (2012).

    Google Scholar 

  6. D. V. Makarov and A. N. Zakhlevnykh, Soft Matter 8, 6493 (2012).

    Article  Google Scholar 

  7. N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, J. Colloid Interface Sci. 386, 158 (2012).

    Article  Google Scholar 

  8. N. Tomašovicová, M. Timko, Z. Mitróová, M. Koneracká, M. Rajnak, N. Éber, T. Tóth-Katona, X. Chaud, J. Jadzyn, and P. Kopcanský, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 87, 014501 (2013).

    Article  ADS  Google Scholar 

  9. A. Mertelj, D. Lisjak, M. Drofenik, and M. Copic, Nature (London) 504, 237 (2013).

    Article  ADS  Google Scholar 

  10. A. Mertelj, N. Osterman, D. Lisjak, and M. Copic, Soft Matter 10, 9065 (2014).

    Article  ADS  Google Scholar 

  11. M. Wang, L. He, S. Zorba, and Y. Yin, Nano Lett. 14, 3966 (2014).

    Article  ADS  Google Scholar 

  12. H. M. Lee, H. K. Chung, H. G. Park, H. C. Jeong, J. J. Han, M. J. Cho, J. W. Lee, and D. S. Seo, Liq. Cryst. 41, 247 (2014).

    Article  Google Scholar 

  13. M. S. Zakerhamidi, S. Shoarinejad, and S. Mohammadpour, J. Mol. Liq. 191, 16 (2014).

    Article  Google Scholar 

  14. V. I. Zadorozhnii, T. J. Sluckin, V. Yu. Reshetnyak, and K. S. Thomas, SIAM J. Appl. Math. 68, 1688 (2008).

    Article  MathSciNet  Google Scholar 

  15. A. N. Zakhlevnykh and D. A. Petrov, J. Mol. Liq. 198, 223 (2014).

    Article  Google Scholar 

  16. F. Brochard and P. G. de Gennes, J. Phys. (Paris) 31, 691 (1970).

    Article  Google Scholar 

  17. D. A. Petrov and A. N. Zakhlevnykh, Mol. Cryst. Liq. Cryst. 557, 60 (2012).

    Article  Google Scholar 

  18. A. N. Zakhlevnykh and D. A. Petrov, Tech. Phys. 57 (9), 1208 (2012).

    Article  Google Scholar 

  19. A. N. Zakhlevnykh and D. A. Petrov, Phase Transitions 87, 1 (2014).

    Article  Google Scholar 

  20. A. N. Zakhlevnykh and D. A. Petrov, J. Magn. Magn. Mater. 401, 188 (2016).

    Article  ADS  Google Scholar 

  21. P. Kopcanský, N. Tomašovicová, M. Koneracká, M. Timko, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, J. Magn. Magn. Mater. 322, 3696 (2010).

    Article  ADS  Google Scholar 

  22. A. N. Zakhlevnykh and D. A. Petrov, J. Magn. Magn. Mater. 393, 517 (2015).

    Article  ADS  Google Scholar 

  23. S. V. Burylov and Y. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 107 (1995).

    Article  Google Scholar 

  24. L. M. Blinov, Structure and Properties of Liquid Crystals (Springer-Verlag, Dordrecht, 2011).

    Book  Google Scholar 

  25. A. Abbate, A. Marino, G. del Gais, L. de Stefano, and T. Wagner, Mol. Cryst. Liq. Cryst. 398, 249 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zakhlevnykh.

Additional information

Original Russian Text © A.N. Zakhlevnykh, D.A. Petrov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 9, pp. 1841–1850.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakhlevnykh, A.N., Petrov, D.A. Orientational transitions in antiferromagnetic liquid crystals. Phys. Solid State 58, 1906–1915 (2016). https://doi.org/10.1134/S1063783416090341

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416090341

Navigation