Skip to main content
Log in

Crystal structure, magnetic, and microwave properties of solid solutions BaFe12–x Ga x O19 (0.1 ≤ x ≤ 1.2)

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The crystal structure of solid solutions of an M-type hexagonal barium ferrite BaFe1–x Ga x O19 (x = 0.1–1.2) with the isostructural diamagnetic substitution of Ga3+ ions has been studied by X-ray diffraction. The unit cell parameters have been calculated for all compositions. The field and temperature dependences of the specific magnetization of these solid solutions have been measured by vibrational magnetometry. The microwave properties of BaFe12–x Ga x O19 (x = 0.1–1.2) have been studied in a bias field. It has been shown that the frequency of natural ferromagnetic resonance decreases as the Ga concentration increases from x = 0.1 to x = 0.6 and it increases once again as the Ga concentration increases to x = 1.2. As the Ga concentration increases, the natural ferromagnetic resonance lines broaden. This indicates an increase in the frequency range of strong absorption of electromagnetic radiation. In this case, the amplitude of the resonance curve peak changes insignificantly. The frequency shift of the natural ferromagnetic resonance in an external magnetic field increases as the gallium ion concentration in the sample decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Turchenko, A. V. Trukhanov, I. A. Bobrikov, S. V. Trukhanov, and A. M. Balagurov, Crystallogr. Rep. 60 (5), 629 (2015).

    Article  ADS  Google Scholar 

  2. S. H. Jabarov, A. V. Trukhanov, S. V. Trukhanov, A. I. Mammadov, V. A. Turchenko, R. Z. Mehdiyeva, and R. E. Huseynov, Optoelectron. Adv. Mater., Rapid Commun. 9, 468 (2015).

    Google Scholar 

  3. Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett. 105, 257201 (2010).

    Article  ADS  Google Scholar 

  4. A. Trukhanov, L. Panina, S. Trukhanov, V. Turchenko, and M. Salem, Chin. Phys. B 25, 016102 (2016).

    Article  Google Scholar 

  5. X. Liu, J. Wang, L. M. Gan, S. C. Ng, and J. Ding, J. Magn. Magn. Mater. 184, 344 (1998).

    Article  ADS  Google Scholar 

  6. J. B. Goodenough, Magnetism and the Chemical Bond (Interscience, New York, 1963; Metallurgiya, Moscow, 1968).

    Google Scholar 

  7. S. Castro, M. Gayoso, J. Rivas, J. M. Greneche, J. Mira, and C. Rodríguez, J. Magn. Magn. Mater. 152, 61 (1996).

    Article  ADS  Google Scholar 

  8. M. H. Makled, T. Matsui, H. Tsuda, H. Mabuchi, M. K. El-Mansy, and K. Morii, J. Mater. Process. Technol. 160, 229 (2005).

    Article  Google Scholar 

  9. J. J. Went, Philips Tech. Rev. 13, 194 (1952).

    Google Scholar 

  10. E. Richter, T. J. E. Miller, T. W. Neumann, and T. L. Hudson, IEEE Trans. Ind. Appl. 21, 644 (1985).

    Article  Google Scholar 

  11. Q. A. Pankhurst and R. S. Pollard, J. Phys.: Condens. Mater. 5, 5457 (1993).

    Google Scholar 

  12. S. V. Trukhanov, A. V. Trukhanov, L. V. Panina, I. S. Kazakevich, V. O. Turchenko, and V. V. Kochervinskii, JETP Lett. 103 (2), 100 (2016).

    Article  ADS  Google Scholar 

  13. A. V. Trukhanov, V. O. Turchenko, I. A. Bobrikov, S. V. Trukhanov, A. I. Balagurov, and I. S. Kazakevich, J. Magn. Magn. Mater. 393, 253 (2015).

    Article  ADS  Google Scholar 

  14. S. B. Narang and I. S. Hudiara, J. Ceram. Proc. Res. 7, 113 (2006).

    Google Scholar 

  15. A. Kumar, V. Agarwala, and D. Singh, Prog. Electromagn. Res. 29, 223 (2013).

    Article  Google Scholar 

  16. V. N. Dhage, M. L. Mane, A. P. Keche, C. T. Birajdar, and K. M. Jadhav, Physica B (Amsterdam) 406, 789 (2011).

    Article  ADS  Google Scholar 

  17. D. Chen, Y. Liu, Y. Li, K. Yang, and H. Zhang, J. Magn. Magn. Mater. 337, 65 ((2013).

    Article  ADS  Google Scholar 

  18. S. V. Trukhanov, A. V. Trukhanov, A. N. Vasil’ev, and G. SHimiak, J. Exp. Theor. Phys. 111 (2), 209 (2010).

    Article  ADS  Google Scholar 

  19. V. V. Vinnikov, Fundamentals of the Design of Radio- Electronic Devices: Electromagnetic Compatibility and Design of Screens (North-West State Technical University, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  20. S. V. Trukhanov, A. V. Trukhanov, A. N. Vasil’ev, A.M. Balagurov, and H. Szymczak, J. Exp. Theor. Phys. 113 (5), 819 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Trukhanov.

Additional information

Original Russian Text © A.V. Trukhanov, S.V. Trukhanov, V.A. Turchenko, V.V. Oleinik, E.S. Yakovenko, L.Yu. Matsui, L.L. Vovchenko, V.L. Launets, I.S. Kazakevich, S.G. Dzhabarov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 9, pp. 1733–1738.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trukhanov, A.V., Trukhanov, S.V., Turchenko, V.A. et al. Crystal structure, magnetic, and microwave properties of solid solutions BaFe12–x Ga x O19 (0.1 ≤ x ≤ 1.2). Phys. Solid State 58, 1792–1797 (2016). https://doi.org/10.1134/S1063783416090328

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416090328

Navigation