Skip to main content
Log in

Influence of coherent nanoinclusions on stress-driven migration of low-angle grain boundaries in nanocomposites

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical model that effectively describes stress-driven migration of low-angle tilt grain boundaries in nanocomposites with nanocrystalline or ultrafine-grained metallic matrices containing ensembles of coherent nanoinclusions has been developed. Within this model, low-angle tilt boundaries have been considered as walls of edge dislocations that, under the influence of stress, slip in the metallic matrix and can penetrate into nanoinclusions. The dislocation dynamics simulation has revealed three main regimes of the stress-driven migration of low-angle grain boundaries. In the first regime, migrating grain boundaries are completely retarded by nanoinclusions and their migration is quickly terminated, while dislocations forming grain boundaries reach equilibrium positions. In the second regime, some segments of the migrating grain boundaries are pinned by nanoinclusions, whereas the other segments continue to migrate over long distances. In the third regime, all segments of grain boundaries (except for the segments located at the boundaries of inclusions) migrate over long distances. The characteristics of these regimes have been investigated, and the critical shear stresses for transitions between the regimes have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Mukherjee, Mater. Sci. Eng., A 322, 1 (2002).

    Article  Google Scholar 

  2. I. A. Ovid’ko, Int. Mater. Rev. 50, 65 (2005).

    Article  Google Scholar 

  3. M. Kawasaki and T. G. Langdon, J. Mater. Sci. 42, 1782 (2007).

    Article  ADS  Google Scholar 

  4. M. Dao, L. Lu, R. J. Asaro, J. T. M. De Hosson, and E. Ma, Acta Mater. 55, 4041 (2007).

    Article  Google Scholar 

  5. C. S. Pande and K. P. Cooper, Prog. Mater. Sci. 54, 689 (2009).

    Article  Google Scholar 

  6. G. A. Malygin, Phys.—Usp. 54 (11), 1091 (2011).

    Article  ADS  Google Scholar 

  7. I. A. Ovid’ko and T. G. Langdon, Rev. Adv. Mater. Sci. 30, 103 (2012).

    Google Scholar 

  8. R. Z. Valiev, I. Sabirov, A. P. Zhilyaev, and T. G. Langdon, JOM 64, 641134 (2012).

    Article  Google Scholar 

  9. Y. T. Zhu, X. Z. Liao, and X.-L. Wu, Prog. Mater. Sci. 57, 1 (2012).

    Article  Google Scholar 

  10. Y. Estrin and A. Vinogradov, Acta Mater. 61, 782 (2013).

    Article  Google Scholar 

  11. R. F. Al’mukhametov, L. A. Gabdrakhmanova, I. Z. Sharipov, and Ya. F. Abzgil’din, Phys. Solid State 56 (2), 223 (2014).

    Article  ADS  Google Scholar 

  12. O. A. Maslova, F. V. Shirokov, Yu. I. Yuzyuk, M. E. Marssi, M. Jain, N. Ortega, and R. S. Katiyar, Phys. Solid State 56 (2), 310 (2014).

    Article  ADS  Google Scholar 

  13. N. V. Tokiy, V. V. Tokiy, A. N. Pilipenko, and N. E. Pis’menova, Phys. Solid State 56 (5), 1002 (2014).

    Article  ADS  Google Scholar 

  14. V. A. Moskalenko, V. I. Betekhtin, B. K. Kardashev, A. G. Kadomtsev, A. R. Smirnov, R. V. Smolyanets, and M. V. Narykova, Phys. Solid State 56 (8), 1590 (2014).

    Article  ADS  Google Scholar 

  15. S. V. Bobylev and I. A. Ovid’ko, Phys. Solid State 57 (10), 2059 (2015).

    Article  ADS  Google Scholar 

  16. M. Jin, A. M. Minor, E. A. Stach, and J. W. Morris, Acta. Mater. 52, 5381 (2004).

    Article  Google Scholar 

  17. W. A. Soer, J. T. M. De Hosson, A. M. Minor, J. W. Morris, and E. A. Stach, Acta Mater. 52, 5783 (2004).

    Article  Google Scholar 

  18. M. Y. Gutkin and I. A. Ovid’ko, Appl. Phys. Lett. 87, 251916 (2005).

    Article  ADS  Google Scholar 

  19. F. Sansoz and V. Dupont, Appl. Phys. Lett. 89, 111901 (2006).

    Article  ADS  Google Scholar 

  20. D. Pan, T. G. Nieh, and M. W. Chen, Appl. Phys. Lett. 88, 161922 (2006).

    Article  ADS  Google Scholar 

  21. P. L. Gai, K. Zhang, and J. Weertman, Scr. Mater. 56, 25 (2007).

    Article  Google Scholar 

  22. V. Dupont and F. Sansoz, Acta Mater. 56, 6013 (2008).

    Article  Google Scholar 

  23. I. A. Ovid’ko, A. G. Sheinerman, and E. C. Aifantis, Acta Mater. 56, 2718 (2008).

    Article  Google Scholar 

  24. T. J. Rupert, D. S. Gianola, Y. Gan, and K. J. Hemker, Science (Washington) 326, 1686 (2009).

    Article  ADS  Google Scholar 

  25. S. Cheng, Y. Zhao, Y. Wang, Y. Li, X.-L. Wang, P. K. Liaw, and E. J. Lavernia, Phys. Rev. Lett. 104, 255501 (2010).

    Article  ADS  Google Scholar 

  26. S. V. Bobylev, N. F. Morozov, and I. A. Ovid’ko, Phys. Rev. Lett. 105, 055504 (2010).

    Article  ADS  Google Scholar 

  27. S. V. Bobylev, N. F. Morozov, and I. A. Ovid’ko, Phys. Rev. B: Condens. Matter 84, 094103 (2011).

    Article  ADS  Google Scholar 

  28. I. A. Ovid’ko, A. G. Sheinerman, and E. C. Aifantis, Acta Mater. 59, 5023 (2011).

    Article  Google Scholar 

  29. S. V. Bobylev and I. A. Ovid’ko, Acta Mater. 88, 260 (2015).

    Article  Google Scholar 

  30. Y. Lin, H. Wen, Y. Li, B. Wen, and E. J. Lavernia, Metall. Mater. Trans. B 45, 795 (2014).

    Article  Google Scholar 

  31. Y. Lin, B. Xu, Y. Feng, and E. J. Lavernia, J. Alloys Compd. 596, 79 (2014).

    Article  Google Scholar 

  32. K. Dám, and P. Lejcek, Mater. Charact. 76, 69 (2013).

    Article  Google Scholar 

  33. Y. Lin, H. Wen, Y. Li, B. Wen, L. Wei, and E. J. La-vernia, Acta Mater. 82, 304 (2015).

    Article  ADS  Google Scholar 

  34. T. Zálezák and A. Dlouhy, Acta Phys. Pol., A 122, 450 (2012).

    Article  Google Scholar 

  35. I. A. Ovid’ko and A. G. Sheinerman, Rev. Adv. Mater. Sci. 39, 99 (2014).

    Google Scholar 

  36. I. A. Ovid’ko and A. G. Sheinerman, J. Mater. Sci. 50, 4430 (2015).

    Article  ADS  Google Scholar 

  37. Ya. V. Konakov, I. A. Ovid’ko, and A. G. Sheinerman, Mater. Phys. Mech. 24, 97 (2015).

    Google Scholar 

  38. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, J. Phys. D: Appl. Phys. 37, 269 (2004).

    Article  ADS  Google Scholar 

  39. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Acta Mater. 52, 3793 (2004).

    Article  Google Scholar 

  40. E. A. Rzhavtsev and M. Yu. Gutkin, Scr. Mater. 100, 102 (2015).

    Article  Google Scholar 

  41. M. Yu. Gutkin and A. E. Romanov, J. Mech. Behav. Mater. 6, 275 (1996).

    Article  Google Scholar 

  42. U. F. Kocks, A. S. Argon, and M. F. Ashby, Prog. Mater. Sci. 19, 1 (1975).

    Article  Google Scholar 

  43. M. Yu. Gutkin, T. Ishizaki, S. Kuramoto, I. A. Ovid’ko, and N. V. Skiba, Int. J. Plast. 24, 1333 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sheinerman.

Additional information

Original Russian Text © Ya.V. Konakov, I.A. Ovid’ko, A.G. Sheinerman, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 9, pp. 1757–1763.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konakov, Y.V., Ovid’ko, I.A. & Sheinerman, A.G. Influence of coherent nanoinclusions on stress-driven migration of low-angle grain boundaries in nanocomposites. Phys. Solid State 58, 1819–1825 (2016). https://doi.org/10.1134/S1063783416090195

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416090195

Navigation