Skip to main content
Log in

Defect silicene and graphene as applied to the anode of lithium-ion batteries: Numerical experiment

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Mechanical properties and stability of two layers of defect silicene supported by graphene sheets, between which the lithium ion passes under an electrostatic field, are studied by the molecular dynamics method. Defects are mono-, di-, tri-, and hexavacansies. Graphene and silicene edges are rigidly fixed. Graphene sheets contacting with silicene take a convex shape, deflecting outward. Mono- and divacancies in silicene tend to a size decrease; larger vacancies exhibit better stability. The ion motion control using an electric field becomes possible only using perfect silicene or silicene with mono- and divacancies. The ion penetrated through larger defects, and its motion in the silicene channel becomes uncontrolled. When the ion moves in the channel, the most strong stress spikes appear in silicene containing monovacancies. In the case of fixed edges, perfect silicene intercalated with a lithium ion is inclined to accumulate larger stresses than silicene containing defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kara, C. Leandri, M. Davila, P. Padova, B. Ealet, H. Oughaddou, B. Aufray, and G. LeLay, J. Supercond. Nov. Magn. 22, 259 (2009).

    Article  Google Scholar 

  2. M. Topsakal and S. Ciraci, Phys. Rev. B: Condens. Matter 81, 024107 (2010).

    Article  ADS  Google Scholar 

  3. Y.-L. Song, Y. Zhang, and J.-M. Zhang. Appl. Surf. Sci. 256, 6313 (2010).

  4. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Leandri, B. Ealet, and G. Le Lay, Appl. Phys. Lett. 96, 183102 (2010).

    Article  ADS  Google Scholar 

  5. M. Neek-Amal, A. Sadeghi, G. R. Berdiyorov, and F. M. Peeters, Appl. Phys. Lett. 103, 261904 (2013).

    Article  ADS  Google Scholar 

  6. R. E. Peierls, Ann. Inst. Henri Poincare 5, 177 (1935).

    MathSciNet  Google Scholar 

  7. L. D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).

    Google Scholar 

  8. K. Kawahara, T. Shirasawa, R. Arafune, C.-L. Lin, T. Takahashi, M. Kawai, and N. Takagi, Surf. Sci. 623, 25 (2014).

    Article  ADS  Google Scholar 

  9. G. A. Nritsaris, E. Kaxiras, S. Meng, and E. Wang, Nano Lett. 13, 2258 (2013).

    Article  ADS  Google Scholar 

  10. J. Tersoff, Phys. Rev. B: Condens. Matter 38, 9902 (1988).

    Article  ADS  Google Scholar 

  11. J. Tersoff, Phys. Rev. B: Condens. Matter 39, 5566 (1989).

    Article  ADS  Google Scholar 

  12. A. Yasukawa, Jpn. Soc. Mech. Eng. 39, 313 (1996).

    Google Scholar 

  13. F. Benkabou, M. Certier, and H. Aourag, Mol. Simul. 29, 201 (2003).

    Article  Google Scholar 

  14. R. Yu, P. Zhai, G. Li, and L. Liu, J. Electron. Mater. 41, 1465 (2012).

    Article  ADS  Google Scholar 

  15. S. K. Das, D. Roy, and S. Sengupta, J. Phys. F: Met. Phys. 7, 5 (1977).

    Article  ADS  Google Scholar 

  16. T.-E. Fang and J.-H. Wu, Comput. Mater. Sci. 43, 785 (2008).

    Article  Google Scholar 

  17. N. Ding, J. Xu, Y. X. Yao, G. Wegner, X. Fang, C. H. Cheng, and I. Lieberwirth, Solid State Ionics 180, 222 (2010).

    Article  Google Scholar 

  18. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  19. A. E. Galashev and Yu. P. Zaikov, Russ. J. Phys. Chem. A 89 (12), 2243 (2015).

    Article  Google Scholar 

  20. A. E. Galashev and Yu. P. Zaikov, Russ. J. Electrochem. 51 (9), 867 (2015).

    Article  Google Scholar 

  21. D. W. Brenner, Phys. Rev. B: Condens. Matter 42, 9458 (1990).

    Article  ADS  Google Scholar 

  22. S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).

    Article  ADS  Google Scholar 

  23. A. E. Galashev and O. R. Rakhmanova, Phys.—Usp. 57 (10), 970 (2014).

    Article  ADS  Google Scholar 

  24. A. E. Galashev, Tech. Phys. 59 (4), 467 (2014).

    Article  Google Scholar 

  25. P. Erhart and K. Albe, Phys. Rev. B: Condens. Matter 71, 035211 (2005).

    Article  ADS  Google Scholar 

  26. B. Peng, F. Cheng, Z. Tao, and J. Chen, J. Chem. Phys. 133, 034701 (2010).

    Article  ADS  Google Scholar 

  27. J. K. Lee, K. B. Smith, C. M. Hayner, and H. H. Kung, Chem. Commun. (Cambridge) 46, 2025 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. R. Rakhmanova.

Additional information

Original Russian Text © A.E. Galashev, O.R. Rakhmanova, Yu.P. Zaikov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 9, pp. 1786–1793.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashev, A.E., Rakhmanova, O.R. & Zaikov, Y.P. Defect silicene and graphene as applied to the anode of lithium-ion batteries: Numerical experiment. Phys. Solid State 58, 1850–1857 (2016). https://doi.org/10.1134/S1063783416090146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416090146

Navigation