Skip to main content
Log in

Field-effect transistor structures on the basis of poly(3-hexylthiophene), fullerene derivatives [60]PCBM, [70]PCBM, and nickel nanoparticles

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Organic field-effect transistor (OFET) structures with the active layers on the basis of composite films of semiconductor polymer poly(3-hexylthiophene) (P3HT), fullerene derivatives [60]PCBM, [70]PCBM, and nickel (Ni) nanoparticles are obtained, and their optical, electrical, and photoelectrical properties are studied. It is shown that introducing Ni nanoparticles into P3HT: [60]PCBM and P3HT: [70]PCBM films leads to an increase in the absorption and to quenching of photoluminescence of the composite in the 400–600 nm spectral band due to the plasmon effect. In P3HT: [60]PCBM: Ni and P3HT: [70]PCBM: Ni OFET structures at the P3HT: [60]PCBM and P3HT: [70]PCBM concentrations of ~1: 1 and Ni concentrations of ~3–5 wt %, current–voltage (I–V) characteristics typical of ambipolar OFETs with the dominant hole conduction are observed. The charge-carrier (hole) mobilities calculated from the I–V characteristic at V G =–10 V were found to be ~0.46 cm2/(V s) for P3HT: [60]PCBM: Ni and ~4.7 cm2/(V s) for P3HT: [70]PCBM: Ni, which means that the mobility increases if [60]PCBM in the composition is replaced with [70]PCBM. The effect of light on the I–V characteristics of P3HT: [60]PCBM: Ni and P3HT: [70]PCBM: Ni OFETs is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Skotheim and J. R. Reynolds, Handbook of Conducting Polymers, 3rd ed. (CRC Press, New York, 2007), Vols. 1–2, p. 1949.

    Google Scholar 

  2. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. von Seggern, Phys. Rev. Lett. 91, 157406 (2003).

    Article  ADS  Google Scholar 

  3. J. Zaumseil, R. H. Friend, and H. Sirringhaus, Nat. Mater. 5, 69 (2006).

    Article  ADS  Google Scholar 

  4. J. S. Swensen, C. Soci, and A. J. Heeger, Appl. Phys. Lett. 87, 253511 (2005).

    Article  ADS  Google Scholar 

  5. H. Kim, J. Y. Kim, S. H. Park, K. Lee, Y. Jin, J. Kim, and H. Suh, Appl. Phys. Lett. 86, 183502 (2005).

    Article  ADS  Google Scholar 

  6. E. J. Meijer, D. M. De Leeuw, S. Setayesh, E. V. Veenendaal, B.-H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nat. Mater. 2, 678 (2003).

    Article  ADS  Google Scholar 

  7. W. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).

    Article  Google Scholar 

  8. I. Etxebarria, J. Ajuria, and R. Pacios, Org. Electron. 19, 34 (2015).

    Article  Google Scholar 

  9. C. J. Brabec, N. S. Saricitci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).

    Article  Google Scholar 

  10. E. von Hauff, J. Parisi, and V. Dyakonov, Thin Solid Films 511, 506 (2006).

    Article  ADS  Google Scholar 

  11. S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, Appl. Phys. Lett. 89, 153505 (2006).

    Article  ADS  Google Scholar 

  12. S. Cho, S.-H. Nho, M. Eo, and M. H. Lee, Org. Electron. 15, 1002 (2014).

    Article  Google Scholar 

  13. C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, J. Mater. Chem. 22, 1206 (2012).

    Article  Google Scholar 

  14. Z. Liu, S. Y. Lee, and E.-C. Lee, Appl. Phys. Lett. 105, 223306 (2014).

    Article  ADS  Google Scholar 

  15. A. N. Aleshin, F. S. Fedichkin, and P. E. Gusakov, Phys. Solid State 53 (11), 2370 (2011).

    Article  ADS  Google Scholar 

  16. J.-Y. Cho, B. Domercq, S. C. Jones, J. Yu, X. Zhang, Z. An, M. Bishop, S. Barlow, S. R. Marder, and B. Kippelen, J. Mater. Chem. 17, 2642 (2007).

    Article  Google Scholar 

  17. A. N. Aleshin, I. P. Shcherbakov, and F. S. Fedichkin, Phys. Solid State 54 (8), 1693 (2012).

    Article  ADS  Google Scholar 

  18. W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, Appl. Phys. Lett. 99, 113304 (2011).

    Article  ADS  Google Scholar 

  19. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. (Weinheim) 14, 99 (2002).

    Article  Google Scholar 

  20. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P.Herwig, and D. M. de Leeuw, Nature (London) 401, 685 (1999).

    Article  ADS  Google Scholar 

  21. K. A. Mohamad, A. Alias, I. Saad, B. K. Gosh, K. Uesugi, and H. Fukuda, J. Chem. Chem. Eng. 8, 476 (2014).

    Google Scholar 

  22. J. Y. Kim, K. Lee, N. E. Coates, W. L. Ma, D. Moses, and A. J. Heeger, Science (Washington) 317, 222 (2007).

    Article  ADS  Google Scholar 

  23. H. Sirringhaus, N. Tessler, and R. H. Friend, Science (Washington) 280, 1741 (1998).

    Article  ADS  Google Scholar 

  24. D. E. Markov, J. C. Hummelen, P. W. M. Blom, and A. B. Sieval, Phys. Rev. B: Condens. Matter 72, 045216 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Aleshin.

Additional information

Original Russian Text © A.N. Aleshin, I.P. Shcherbakov, I.N. Trapeznikova, V.N. Petrov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 9, pp. 1818–1825.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, A.N., Shcherbakov, I.P., Trapeznikova, I.N. et al. Field-effect transistor structures on the basis of poly(3-hexylthiophene), fullerene derivatives [60]PCBM, [70]PCBM, and nickel nanoparticles. Phys. Solid State 58, 1882–1890 (2016). https://doi.org/10.1134/S1063783416090043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416090043

Navigation