Skip to main content
Log in

Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

For the first time, zinc oxide epitaxial films on silicon were grown by the method of atomic layer deposition at a temperature T = 250°C. In order to avoid a chemical reaction between silicon and zinc oxide (at the growth temperature, the rate constant of the reaction is of the order of 1022), a high-quality silicon carbide buffer layer with a thickness of ~50 nm was preliminarily synthesized by the chemical substitution of atoms on the silicon surface. The zinc oxide films were grown on n- and p-type Si(100) wafers. The ellipsometric, Raman, electron diffraction, and trace element analyses showed that the ZnO films are epitaxial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. A. Coleman and C. Jagadish, in Zinc Oxide Bulk, Thin Films and Nanostructures, Ed. by C. Jagadish and S. J. Pearton (Elsevier, Oxford, 2006).

  2. C. F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide (Springer-Verlag, Berlin, 2010).

    Book  Google Scholar 

  3. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98 (4), 041301 (2005).

    Article  ADS  Google Scholar 

  4. K. Elmer, in Handbook of Transparent Conductors, Ed. by D. S. Ginley (Springer-Verlag, New York, 2010), p. 193.

  5. V. V. Antipov, S. A. Kukushkin, and A. V. Osipov, Phys. Solid State 58 (3), 629 (2016).

    Article  ADS  Google Scholar 

  6. S. A. Kukushkin and A. V. Osipov, J. Appl. Phys. 113, 024909 (2013).

    Article  ADS  Google Scholar 

  7. S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014).

    Article  ADS  Google Scholar 

  8. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56 (8), 1507 (2014).

    Article  ADS  Google Scholar 

  9. S. A. Kukushkin, A. V. Osipov, E. V. Osipova, S. V. Razumov, and A. V. Kandakov, Opt. Zh. 78 (7), 29 (2011).

    Google Scholar 

  10. A. V. Osipov, S. A. Kukushkin, N. A. Feoktistov, E. V. Osipova, N. Venugopal, G. D. Verma, B. K. Gupta, and A. Mitra, Thin Solid Films 520, 6836 (2012).

    Article  ADS  Google Scholar 

  11. T. Tynell and M. Karppinen, Semicond. Sci. Technol. 29, 043001 (2014).

    Article  ADS  Google Scholar 

  12. I. Kh. Akopyan, V. Yu. Davydov, M. E. Labzovskaya, M. E. Labzovskaya, A. A. Lisachenko, Ya. A. Mogunov, D. V. Nazarov, B. V. Novikov, A. I. Romanychev, A. Yu. Serov, A. N. Smirnov, V. V. Titov, and N. G. Filosofov, Phys. Solid State 57 (9), 1865 (2015).

    Article  ADS  Google Scholar 

  13. R. Kudrawiec, J. Misiewicz, L. Wachnicki, E. Guziewicz, and M. Godlewsk, Semicond. Sci. Technol. 26, 075012 (2011).

    Article  ADS  Google Scholar 

  14. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 56 (4), 792 (2014).

    Article  ADS  Google Scholar 

  15. S. A. Kukushkin and A. V. Osipov, Tech. Phys. Lett. 42 (2), 175 (2016).

    Article  ADS  Google Scholar 

  16. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Kluwer, Boston, 1999).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Additional information

Original Russian Text © S.A. Kukushkin, A.V. Osipov, A.I. Romanychev, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 7, pp. 1398–1402.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, S.A., Osipov, A.V. & Romanychev, A.I. Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates. Phys. Solid State 58, 1448–1452 (2016). https://doi.org/10.1134/S1063783416070246

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416070246

Navigation