Skip to main content
Log in

On the role of secondary extinction in the measurement of the integrated intensity of X-ray diffraction peaks and in the determination of the thickness of damaged epitaxial layers

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The integrated intensity of X-ray diffraction reflections has been measured for a series of epitaxial layers of AIII nitrides (GaN, AlN, AlGaN) grown on different substrates (sapphire, SiC) and characterized by different degrees of structural perfection. It has been shown that, despite a high density of dislocations and a significant broadening of the diffraction peaks, the obtained values are not described by the kinematic theory of X-ray diffraction and suggest the existence of extinction. The results have been analyzed on the basis of the Darwin and Zachariasen extinction models. The secondary extinction coefficients and the thicknesses of epitaxial layers have been determined using two orders of reflection both in the Bragg geometry (0002 and 0004) and in the Laue geometry (\(10\bar 10\)) and \(10\bar 20\)). It has been demonstrated that the secondary extinction coefficient is the greater, the smaller is the broadening of the diffraction peaks and, consequently, the dislocation density. It has been found that, for epitaxial layers with a regular system of threading dislocations, the secondary extinction coefficient for the Laue reflections is substantially greater than that for the Bragg reflections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Krivoglaz, Theory of X-Ray and Thermal-Neutron Scattering by Real Crystal (Nauka, Moscow, 1967; Plenum, New York, 1969).

    Google Scholar 

  2. P. H. Dederichs, J. Phys. F: Met. Phys. 3, 471 (1973).

    Article  ADS  Google Scholar 

  3. B. C. Larson, J. Appl. Crystallogr. 8, 150 (1975).

    Article  Google Scholar 

  4. V. M. Kaganer, O. Brandt, A. Trampert, and K. H. Ploog, Phys. Rev. B: Condens. Matter 72 4, 045423 (2005).

    Article  ADS  Google Scholar 

  5. V. M. Kaganer, A. Shalimov, J. Bak-Misiuk, and K. H. Ploog, J. Phys.: Condens. Matter 18, 5047 (2006).

    ADS  Google Scholar 

  6. M. Barchuk, V. Holý, B. Miljevic, B. Krause, T. Baumbach, J. Hertkorn, and F. Scholz, J. Appl. Phys. 108 4, 043521 (2010).

    Article  ADS  Google Scholar 

  7. W. H. Zachariasen, Acta Crystallogr. 23, part 4, 558 (1967).

    Article  Google Scholar 

  8. R. W. James, The Optical Principles of the Diffraction of X-Rays (G. Bell, New York, 1948; Inostrannaya Literatura, Moscow, 1950).

    Google Scholar 

  9. P. Becker, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 33, 243 (1977).

    Article  ADS  Google Scholar 

  10. P. J. Becker and P. Coppens, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 30, 129 (1974).

    Article  ADS  Google Scholar 

  11. J. L. Lowrence, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 30, 454 (1974).

    Article  ADS  Google Scholar 

  12. J. L. Lowrence, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 33, 232 (1977).

    Article  ADS  Google Scholar 

  13. R. N. Kyutt and Yu. P. Khapachev, Tech. Phys. 38 12, 1061 (1993).

    Google Scholar 

  14. R. N. Kyutt, V. V. Ratnikov, G. N. Mosina, and M. P. Shcheglov, Phys. Solid State 41 1, 25 (1999).

    Article  ADS  Google Scholar 

  15. V. V. Ratnikov, R. N. Kyutt, T. V. Shubina, T. Paskova, and B. Monemar, J. Phys. D: Appl. Phys. 34 (10A), A30 (2001).

    Article  ADS  Google Scholar 

  16. T. Cromer and D. Liberman, J. Chem. Phys. 53, 1891 (1970).

    Article  ADS  Google Scholar 

  17. L. Kirste, K. M. Pavlov, S. T. Mudie, V. I. Punegov, and N. Herres, J. Appl. Crystallogr. 38, 183 (2005).

    Article  Google Scholar 

  18. R. N. Kyutt and A. A. Dyshekov, Tech. Phys. Lett. 37 4, 306 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Kyutt.

Additional information

Original Russian Text © R.N. Kyutt, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 6, pp. 1058–1064.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyutt, R.N. On the role of secondary extinction in the measurement of the integrated intensity of X-ray diffraction peaks and in the determination of the thickness of damaged epitaxial layers. Phys. Solid State 58, 1090–1097 (2016). https://doi.org/10.1134/S1063783416060287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416060287

Navigation