Skip to main content
Log in

On wave and rheidity properties of the Earth’s crust

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The properties of the Earth’s solid crust have been studied on the assumption that this crust has a block structure. According to the rotation model, the motion of such a medium (geomedium) follows the angular momentum conservation law and can be described in the scope of the classical elasticity theory with a symmetric stress tensor. A geomedium motion is characterized by two types of rotation waves with shortand long-range actions. The first type includes slow solitons with velocities of 0 ≤ V sol ≤ c0, max = 1–10 cm s–1; the second type, fast excitons with V 0V exV SV P. The exciton minimal velocity (V 0 = 0) depends on the energy of the collective excitation of all seismically active belt blocks proportional to the Earth’s pole vibration frequency (the Chandler vibration frequency). The exciton maximal velocity depends on the velocities of S (V S ≈ 4 km s–1) and/or P (V P ≈ 8 km s–1) seismic (acoustic) waves. According to the rotation model, a geomedium is characterized by the property physically close to the corpuscular–wave interaction between blocks that compose this medium. The possible collective wave motion of geomedium blocks can be responsible for the geomedium rheidity property, i.e., a superplastic volume flow. A superplastic motion of a quantum fluid can be the physical analog of the geomedium rheid motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Rybin and I. M. Zhukovskii, Fiz. Tverd. Tela (Leningrad) 19 (8), 1474 (1977).

    Google Scholar 

  2. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  3. V. V. Mokhova, D. A. Volkov, A. V. Til’kunov, and N. I. Orlov, Phys. Solid State 57 (4), 794 (2015).

    Article  ADS  Google Scholar 

  4. V. E. Panin, Fiz. Mezomekh. 1 (1), 5 (1998).

    Google Scholar 

  5. V. A. Likhachev, V. E. Panin, and E. E. Zasimchuk, Cooperative Deformation Processes and Localization of Deformation (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  6. V. I. Erofeev, Wave Processes in Solids with Microstructure (Moscow State University, Moscow, 1999) [in Russian].

    Google Scholar 

  7. V. I. Erofeev, Vychisl. Mekh. Sploshnykh Sred 2 (4), 5 (2009).

    MathSciNet  Google Scholar 

  8. I. S. Pavlov, Doctoral Dissertation (Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Nizhny Novgorod, 2013).

    Google Scholar 

  9. V. V. Moshev and O. K. Garishin, Usp. Mekh. 2 (3), 3 (2005).

    Google Scholar 

  10. V. N. Nikolaevskii, Dokl. Ross. Akad. Nauk 341 (3), 405 (1995).

    MathSciNet  Google Scholar 

  11. A. I. Potapov, Deformation Waves in the Medium with an Internal Structure (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2005) [in Russian].

    Google Scholar 

  12. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

    Google Scholar 

  13. A. V. Vikulin, Seismicity. Volcanism. Geodynamics: Selected Works (Kamchatka State University, Petropavlovsk- Kamchatskii, 2011) [in Russian].

    Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Fizmatlit, Moscow, 2003; Butterworth–Heinemann, Oxford, 2005).

    Google Scholar 

  15. A. V. Vikulin and A. G. Ivanchin, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3, 67, (2013).

    Google Scholar 

  16. A. V. Vikulin, Kh. F. Makhmudov, and G. I. Korshunov, Int. J. Mod. Educ. Res. 1, 1 (2014).

    Google Scholar 

  17. A. V. Vikulin, Geol. Geofiz. 49 (6), 559 (2008).

    Google Scholar 

  18. A. V. Vikulin, Geodin. Tektonofiz. 1 (2), 119 (2010).

    Google Scholar 

  19. A. V. Vikulin, V. G. Bykov, and M. N. Luneva, Vychisl. Tekhnol. 5 (1), 31 (2000).

    Google Scholar 

  20. A. V. Peive, Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 36 (1961).

    Google Scholar 

  21. M. A. Sadovskii and V. F. Pisarenko, Seismic Process in a Block Medium (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  22. A. V. Vikulin and A. G. Ivanchin, Nauchno-Tekh. Zh., No. 1, 435 (2002).

    Google Scholar 

  23. V. S. Ponomarev, Energy-Saturation of Geological Media (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  24. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1973; World Scientific, Singapore, 1997), Vol. 2.

    Book  MATH  Google Scholar 

  25. M. G. Leonov, Tectonics of the Consolidated Crust (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  26. Geological Handbook, Ed. by K. N. Paffengol’ts (Nedra, Moscow, 1978), Vol. 2 [in Russian].

  27. L. N. Rykunov, O. Yu. Khavroshkin, and V. V. Tsyplakov, Izv. Akad. Nauk SSSR, Fiz. Zemli 11, 72 (1979).

    Google Scholar 

  28. K. Kasahara, Earthquake Mechanics (Cambridge University Press, Cambridge, 1981; Mir, Moscow, 1985).

    Google Scholar 

  29. S. I. Kuzikov and Sh. A. Mukhamediev, Phys. Solid Earth 46 (7), 584 (2010).

    Article  Google Scholar 

  30. E. E. Milanovskii, Rotational Processes in Geology and Physics (KomKniga, Moscow, 2007) [in Russian].

    Google Scholar 

  31. A. V. Vikulin and A. G. Ivanchin, Vychisl. Tekhnol. 2 (2), 20 (1997).

    Google Scholar 

  32. A. V. Vikulin, Physics of the Earth and Geodynamics (Kamchatka State University, Petropavlovsk-Kamchatskii, 2009) [in Russian].

    Google Scholar 

  33. A. V. Vikulin, I. V. Melekestsev, D. R. Akmanova, A. G. Ivanchin, G. M. Vodinchar, A. A. Dolgaya, and V. K. Gusyakov, Vychisl. Tekhnol. 17 (3), 34 (2012).

    Google Scholar 

  34. A. V. Nikolaev, in Problems of Nonlinear Seismics (Nauka, Moscow, 1987), pp. 5–20 [in Russian].

    Google Scholar 

  35. A. S. Davydov, Sov. Phys.—Usp. 25 (12), 898 (1982).

    Article  ADS  Google Scholar 

  36. A. V. Gaponov-Grekhov and M. I. Rabinovich, Sov. Phys.—Usp. 22 (8), 590 (1979).

    Article  ADS  Google Scholar 

  37. O. A. Khachai and O. Yu. Khachai, in Proceedings of the 3rd Tectonophysics Conference, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, October 8–12, 2012, Vol. 2, p. 418

    MathSciNet  Google Scholar 

  38. V. N. Oparin, V. F. Yushkin, B. F. Simonov, L. A. Nazarov, V. I. Vostrikov, and Yu. V. Pogarskii, Geomechanical and Technical Bases of Enhancement of Oil Recovery in Vibration Wave Technology (Nauka, Novosibirsk, 2010) [in Russian].

    Google Scholar 

  39. V. V. Adushkin and V. N. Oparin, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2, 3 (2013).

    Google Scholar 

  40. E. A. Pamyatnykh and A. V. Urusov, Acoust. Phys. 58 (2), 160 (2012).

    Article  ADS  Google Scholar 

  41. O. V. Rudenko, A. L. Sobisevich, L. E. Sobisevich, C. M. Hedberg, and N. V. Shamaev, Acoust. Phys. 58 (1), 99 (2012).

    Article  ADS  Google Scholar 

  42. A. I. Korobov, N. I. Odina, and D. M. Mekhedov, Acoust. Phys. 59 (4), 387 (2013).

    Article  ADS  Google Scholar 

  43. A. V. Vikulin and A. N. Krolevetz, Acta Geophys. Pol. 50 (3), 395 (2002).

    Google Scholar 

  44. M. A. Il’gamov, Phys. Solid State 57 (5), 962 (2015).

    Article  ADS  Google Scholar 

  45. V. V. Kuznetsov, Fiz. Mezomekh. 12 (6), 87 (2009).

    Google Scholar 

  46. V. N. Zharkov, Interior Structure of the Earth and Planets (Nauka, Moscow, 1983; Harwood, New York, 1986).

    Google Scholar 

  47. L. D. Landau, Theory of Superfluidity of Helium-II: Collection of Works (Nauka, Moscow, 1969). Vol. 1, pp. 352–385 [in Russian].

    Google Scholar 

  48. E. M. Lifshitz, in Helium, Ed. by W. H. Keesom (Elsevier, Amsterdam, 1942; Inostrannaya Literatura, Moscow, 1949), pp. 385–429.

  49. J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972; Mir, Moscow, 1974).

    MATH  Google Scholar 

  50. O. A. Khachai, O. Yu. Khachai, V. K. Klimko, and O. V. Shipev, in Geodynamics and Stress State of the Earth Interior. Proceedings of the 20th All-Russian Scientific Conference, Chinakal Institute of Mining, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, October 7–11, 2013, pp. 38–42.

    Google Scholar 

  51. V. N. Oparin, A. S. Tanaino, and V. F. Yushkin, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3, 6 (2007).

    Google Scholar 

  52. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Butterworth–Heinemann, Oxford, 1981).

    Google Scholar 

  53. E. Fermi, Notes on Quantum Mechanics (University of Chicago Press, Chicago, Illinois, United States, 1961; Mir, Moscow, 1968).

    Google Scholar 

  54. V. G. Levich, Yu. A. Vdovin, and V. A. Myamlin, Course of Theoretical Physics, Vol.2: Quantum Mechanics: Quantum Statistics and Physical Kinetics (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  55. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1964; Butterworth–Heinemann, Oxford, 1968).

    Google Scholar 

  56. A. V. Vikulin, Vestn. Kamchatskoi Reg. Assots. “Uchebno-Nauchn. Tsentr,” Ser.: Nauki o Zemle, No. 1, 163 (2013).

    Google Scholar 

  57. A. V. Vikulin, World of Vortex Motions (Kamchatka State Technical University, Petropavlovsk-Kamchatskii, 2008) [in Russian].

    Google Scholar 

  58. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin Waves (Nauka, Moscow, 1967; North Holland, Amsterdam, 1968).

    Google Scholar 

  59. V. N. Oparin, A. V. Leont’ev, A. A. Kozyrev, A. D. Sashurin, V. V. Ruzhich, and A. F. Emanov, Destruction of the Earth Crust and the Processes of Self-Organization in the Field of Strong Technogenic Impact (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2012) [in Russian].

    Google Scholar 

  60. V. S. Kuksenko, Kh. F. Makhmudov, and B. Ts. Manzhikov, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4, 29 (2010).

    Google Scholar 

  61. L. B. Zuev, V. I. Danilov, and S. A. Barannikova, Physics of Macrolocalization of Plastic Flow (Nauka, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  62. A. V. Porubov, Localization of Nonlinear Waves of Deformation (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  63. A. V. Vikulin, Prostranstvo i Vremya, No. 1, 196 (2014).

    Google Scholar 

  64. A. V. Vikulin, A. A. Dolgaya, and S. A. Vikulina, Geodyn. Tectonophys. 5 (1), 291 (2014).

    Article  Google Scholar 

  65. A. S. Davydov, Theory of Solids (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  66. S. N. Zhurkov, Vestn. Akad. Nauk SSSR, No. 3, 46 (1968).

    Google Scholar 

  67. Yu. S. Vladimirov, Metaphysics (BINOM, Moscow, 2009) [in Russian].

    Google Scholar 

  68. M. Gell-Mann, in Nature of Matter, Ed. by J. Mulvey (Clarendon, Oxford, 1981; Mir, Moscow, 1984), p. 266.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vikulin.

Additional information

Original Russian Text © A.V. Vikulin, Kh.F. Makhmudov, A.G. Ivanchin, A.I. Gerus, A.A. Dolgaya, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 3, pp. 547–557.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikulin, A.V., Makhmudov, K.F., Ivanchin, A.G. et al. On wave and rheidity properties of the Earth’s crust. Phys. Solid State 58, 561–571 (2016). https://doi.org/10.1134/S1063783416030306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416030306

Keywords

Navigation