Skip to main content
Log in

Mössbauer investigations of Fe and Fe3O4 magnetic nanoparticles for hyperthermia applications

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles of magnetite Fe3O4 and Fe synthesized by physical vapor deposition with a fast highly effective method using a solar energy have been studied. Targets have been prepared from tablets pressed from Fe3O4 or Fe powders. Relationships between the structure of nanoparticles and their magnetic properties have been investigated in order to understand principles of the control of the parameters of magnetic nanoparticles. Mössbauer investigations have revealed that the nanoparticles synthesized from tablets of both pure iron and Fe3O4 consist of two phases: pure iron and iron oxides (γ-Fe2O3 and Fe3O4). The high iron oxidability suggests that the synthesized nanoparticles have a core/shell structure, where the core is pure iron and the shell is an oxidized iron layer. Magnetite nanoparticles synthesized at a pressure of 80 Torr have the best parameters for hyperthermia due to their core/shell structure and core-to-shell volume ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott, and C. B. Taylor, Ann. Surg. 146, 596 (1957).

    Article  Google Scholar 

  2. J. J. W. Lagendijk, Phys. Med. Biol. 45, R61 (2000).

    Article  ADS  Google Scholar 

  3. K. Maier-Hauff, F. Uldrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, and A. Jordan, J. Neuro-Oncol. 103, 317 (2011).

  4. B. Mehdaoui, R. P. Tan, A. Meffre, J. Carrey, S. Lachaize, B. Chaudret, and M. Respaud, Phys. Rev. B: Condens. Matter 87, 174419 (2013).

    Article  ADS  Google Scholar 

  5. E. L. Verde, G. T. Landi, M. S. Carriao, A. L. Drummond, J. A. Gomes, E. D. Vieira, M. H. Sousa, and A. F. Bakuzis, AIP Adv. 2, 032120 (2012).

  6. R. Hergt, S. Dutz, and M. Roder, J. Phys.: Condens. Matter 20, 385214 (2008).

    ADS  Google Scholar 

  7. M. K. Yu, J. Park, and S. Jon, Theranostics 2 (1), 3 (2012).

    Article  Google Scholar 

  8. C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estrade, F. Peiro, Z. Saghi, P.A. Midgley, I. Conde-Leboran, D. Serantes, and D. Baldomir, Sci. Rep. 3, 1652 (2013).

    Article  ADS  Google Scholar 

  9. S. H. Noh, W. Na, J. T. Jang, J. H. Lee, E. J. Lee, S. H. Moon, Y. Lim, J. S. Shin, and J. Cheon, Nano Lett. 12, 3716 (2012).

    Article  ADS  Google Scholar 

  10. C. Martinez-Boubeta, K. Simeonidis, D. Serantes, I. Conde Leboran, I. Kazakis, G. Stefanou, L. Pena, R. Galceran, Ll. Balcells, C. Monty, D. Baldomir, M. Mitrakas, and M. Angelakeris, Adv. Funct. Mater. 22, 3737 (2012).

    Article  Google Scholar 

  11. S. Balivada, R. S. Rachakatla, H. Wang, T. N. Samarakoon, R. K. Dani, M. Pyle, F. O. Kroh, B. Walker, X. Leaym, O. B. Koper, M. Tamura, V. Chikan, S. H. Bossmann, and D. L. Troyer, BMC Cancer 10, 119 (2010).

    Article  Google Scholar 

  12. G. Zhang, Y. Liao, and I. Baker, Mater. Sci. Eng., C 30, 92 (2010).

    Article  Google Scholar 

  13. C. G. Hadjipanayis, M. J. Bonder, S. Balakrishnan, X. Wang, H. Mao, and G. C. Hadjipanayis, Small 4, 1925 (2008).

    Article  Google Scholar 

  14. O. Bomati-Miguel, M. P. Morales, P. Tartaj, J. Ruiz- Cabello, P. Bonville, M. Santos, X. Zhao, and S. Veintemillas-Veraguer, Biomaterials 26, 5695 (2005).

    Article  Google Scholar 

  15. K. Simeonidis, C. Martinez-Boubeta, Ll. Balcells, C. Monty, G. Stavropoulos, M. Mitrakas, A. Matsakidou, G. Vourlias, and M. Angelakeris, J. Appl. Phys. 114, 103904 (2013).

    Article  ADS  Google Scholar 

  16. S. Tashiro, T. Zeniya, K. Yamamoto, M. Tanaka, K. Nakata, A. B. Murphy, E. Yamamoto, K. Yamazaki, and K. Suzuki, J. Phys. D: Appl. Phys. 43, 434012 (2010).

    Article  ADS  Google Scholar 

  17. V. G. Semenov and V. V. Panchuk, private communication.

  18. R. Karmhag, G. A. Niklasson, and M. Nygren, J. Appl. Phys. 89, 3012 (2001).

    Article  ADS  Google Scholar 

  19. M. F. Toney, A. J. Davenport, L. J. Oblonsky, M. P. Ryan, and C. M. Vitus, Phys. Rev. Lett. 79, 4282 (1997).

    Article  ADS  Google Scholar 

  20. J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011).

    Article  ADS  Google Scholar 

  21. N. A. Usov and B. Ya. Liubimov, J. Appl. Phys. 112, 023901 (2012).

    Article  ADS  Google Scholar 

  22. M. Beković, M. Trlep, M. Jesenik, V. Goričan, and A. Hamler, J. Magn. Magn. Mater. 331, 264 (2013).

    Article  ADS  Google Scholar 

  23. D. H. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh, M. S. Lesniak, and V. Novosad, Nat. Mater. 9, 165 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamzin.

Additional information

Original Russian Text © A.S. Kamzin, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 3, pp. 519–525.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzin, A.S. Mössbauer investigations of Fe and Fe3O4 magnetic nanoparticles for hyperthermia applications. Phys. Solid State 58, 532–539 (2016). https://doi.org/10.1134/S1063783416030161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416030161

Keywords

Navigation