Skip to main content
Log in

Investigation of halloysite nanotubes with deposited silver nanoparticles by methods of optical spectroscopy

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Halloysite nanotube composites covered by silver nanoparticles with the average diameters of 5 nm and 9 nm have been studied by methods of optical spectroscopy of reflectance/transmittance and Raman spectroscopy. It has been established that silver significantly increases the light absorption by nanocomposites in the range of 300 to 700 nm with a maximum near 400 nm, especially for the samples with the nanoparticle size of 9 nm, which is explained by plasmonic effects. The optical absorption increases also in the long-wavelength spectral range, which seems to be due to the localized electronic states in an alumosilicate halloysite matrix after deposition of nanoparticles. Raman spectra of nanocomposites reveal intense scattering peaks at the local phonons, whose intensities are maxima for the samples with the silver nanoparticle sizes of 9 nm, which can be caused by plasmonic enhancement of the light scattering efficiency. The results show the ability to use halloysite nanotube nanocomposites in photonics and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Lvov and E. Abdullayev, Prog. Polym. Sci. 38, 1690 (2013).

    Article  Google Scholar 

  2. Y. Joo, Y. Jeon, S. U. Lee, J. H. Sim, J. Ryu, S. Lee, H. Lee, and D. Sohn, J. Phys. Chem. C 116, 18230 (2012).

    Article  Google Scholar 

  3. T. F. Bates, F. A. Hildebrand, and A. Swineford, Am. Mineral. 35, 463 (1950).

    Google Scholar 

  4. B. Singh, Clays Clay Miner. 44, 191 (1996).

    Article  ADS  Google Scholar 

  5. E. Abdullayev, A. Joshi, W. Wei, Y. Zhao, and Y. Lvov, ACS Nano 6, 7216 (2012).

  6. G. Cavallaro, G. Lazzara, and S. Milioto, J. Phys. Chem. C 116, 21932 (2012).

    Article  Google Scholar 

  7. L. Wang, J. L. Chen, L. Ge, Z. H. Zhu, and V. Rudolph, Energy Fuels 25, 3408 (2011).

    Article  Google Scholar 

  8. M. X. Liu, B. C. Guo, M. L. Du, F. Chen, and D. M. Jia, Polymer 50, 3022 (2009).

    Article  Google Scholar 

  9. Yu. D. Tret’yakov, A. V. Lukashin, and A. A. Eliseev, Usp. Khim. 73, 974 (2004).

    Google Scholar 

  10. I. V. Kolesnik, A. A. Eliseev, A. V. Garshev, A. V. Lukashin, and Yu. D. Tret’yakov, Russ. Chem. Bull. 53 (11), 2496 (2004).

    Article  Google Scholar 

  11. E. Abdullayev, K. Sakakibara, K. Okamoto, W. Wei, K. Ariga, and Y. Lvov, ACS Appl. Mater. Interfaces 3, 4040 (2011).

    Article  Google Scholar 

  12. P. Yuan, D. Tan, and F. Annabi-Bergaya, Appl. Clay Sci. 112–113, 75 (2015).

    Article  Google Scholar 

  13. D. Rawtani and Y. K. Agrawal, Rev. Adv. Mater. Sci. 30, 282 (2012).

    Google Scholar 

  14. I. R. Nabiev, R. G. Efremov, and G. D. Chumanov, Sov. Phys.—Usp. 31 (3), 241 (1988).

    Article  ADS  Google Scholar 

  15. Y. Y. Jiang, X. J. Wu, Q. Li, J. J. Li, and D. S. Xu, Nanotechnology 22, 385601 (2011).

    Article  ADS  Google Scholar 

  16. M. Zieba, J. L. Hueso, M. Arruebo, G. Martinezab, and J. Santamaria, New J. Chem. 38, 2037 (2014).

    Article  Google Scholar 

  17. H. Zhu, M. L. Du, M. L. Zou, C. S. Xua, and Y. Q. Fu, Dalton Trans. 41, 10465 (2012).

    Article  Google Scholar 

  18. S. Jana and S. Das, RSC Adv. 4, 34435 (2014).

    Article  Google Scholar 

  19. P. Yuan, P. D. Southon, Z. Liu, M. E. R. Green, J. M. Hook, S. J. Antill, and C. J. Kepert, J. Phys. Chem. C 112, 15742 (2008).

    Article  Google Scholar 

  20. C. Diaz-Egea, R. Abargues, J. P. Martínez-Pastor, W. Sigle, P. A. van Aken, and S. I. Molina, Nanoscale Res. Lett. 10, 310 (2015).

    Article  ADS  Google Scholar 

  21. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, Chem. Rev. 111, 3913 (2011).

    Article  Google Scholar 

  22. C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, Nano Lett. 12, 1648 (2012).

    Article  ADS  Google Scholar 

  23. H. G. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, Nano Lett. 12, 1683 (2012).

    Article  ADS  Google Scholar 

  24. R. L. Frost, Clays Clay Miner. 43, 191 (1995).

    Article  ADS  Google Scholar 

  25. R. L. Frost and H. E. Shurvell, Clays Clay Miner. 45, 68 (1997).

    Article  ADS  Google Scholar 

  26. M. R. Lopez-Ramirez, J. F. Arenas, J. C. Otero, and J. L. Castro, J. Raman Spectrosc. 35, 390 (2004).

    Article  ADS  Google Scholar 

  27. L.-B. Zhao, R. Huang, M.-X. Bai, D.-Y. Wu, and Z.-Q. Tian, J. Phys. Chem. C. 115, 4174 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Gonchar.

Additional information

Original Russian Text © K.A. Gonchar, A.V. Kondakova, Subhra Jana, V.Yu. Timoshenko, A.N. Vasiliev, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 3, pp. 585–589.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonchar, K.A., Kondakova, A.V., Jana, S. et al. Investigation of halloysite nanotubes with deposited silver nanoparticles by methods of optical spectroscopy. Phys. Solid State 58, 601–605 (2016). https://doi.org/10.1134/S1063783416030112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416030112

Keywords

Navigation