Skip to main content
Log in

Study of the effects of hydroxyapatite nanocrystal codoping by pulsed electron paramagnetic resonance methods

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of codoping of hydroxyapatite (HAP) nanocrystals with average sizes of 35 ± 15 nm during “wet” synthesis by CO 2−3 carbonate anions and Mn2+ cations on relaxation characteristics (for the times of electron spin–spin relaxation) of the NO 2−3 nitrate radical anion has been studied. By the example of HAP, it has been demonstrated that the electron paramagnetic resonance (EPR) is an efficient method for studying anion–cation (co)doping of nanoscale particles. It has been shown experimentally and by quantummechanical calculations that simultaneous introduction of several ions can be energetically more favorable than their separate inclusion. Possible codoping models have been proposed, and their energy parameters have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Kaminskii and B. M. Antipenko, Multilayer Functional Schemes of Crystal Lasers (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  2. M. Laroche, S. Girard, R. Moncourge, M. Bettinelli, R. Abdulsabirov, and V. Semashko, Opt. Mater. 22, 147 (2003).

    Article  ADS  Google Scholar 

  3. A. S. Nizamutdinov, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Yu. Abdulsabirov, A. N. Polivin, and M. A. Marisov, J. Lumin. 127, 71 (2007).

    Article  Google Scholar 

  4. S. V. Dorozhkin, Am. J. Biomed. Eng. 2, 48 (2012).

    Article  Google Scholar 

  5. A. B. Brik, A. P. Shpak, V. L. Karbovskii, A. P. Klimenko, V. A. Dubok, A. M. Kalinichenko, N. N. Bagmut, and V. V. Bevz, Mineral. Zh. 27, 5 (2005).

    Google Scholar 

  6. J. Hui and X. Wang, Inorg. Chem. Front. 1, 215 (2014).

    Article  Google Scholar 

  7. M. Islam, P. C. Mishra, and R. Patel, J. Environ. Manage. 91, 1883 (2010).

    Article  Google Scholar 

  8. Biomedical Engineering—Frontiers and Challenges, Ed. by R. Fazel-Rezai (InTech, Rijeka, Croatia, 2011), p. 75.

  9. S. H. Chu, D. F. Feng, Y. Ma, and Z. Q. Li, Int. J. Nanomed. 7, 3659 (2012).

    Article  Google Scholar 

  10. M. Iafisco, J. M. Delgado-Lopez, E. M. Varoni, A. Tampieri, L. Rimondini, J. Gomez-Morales, and M. Prat, Small 9, 3834 (2013).

    Article  Google Scholar 

  11. R. Gibson and W. Bonfield, J. Biomed. Mater. Res. 52, 697 (2002).

    Article  Google Scholar 

  12. M. P. Moreira, V. T. Da Silva Aragão, G. DeAlmeida Soares, and E. A. Dos Santos, Key Eng. Mater. 493–494, 20 (2012).

    Google Scholar 

  13. B. V. Yavkin, G. V. Mamin, S. B. Orlinskii, M. R. Gafurov, M. Kh. Salakhov, T. B. Biktagirov, E. S. Klimashina, V. I. Putlayev, Y. D. Tretyakov, and N. I. Silkin, Phys. Chem. Chem. Phys. 14, 2246 (2012).

    Article  Google Scholar 

  14. M. R. Gafurov, B. V. Yavkin, T. B. Biktagirov, G. V. Mamin, S. B. Orlinskii, V. V. Izotov, M. Kh. Salakhov, E. S. Klimashina, V. A. Abdulyanov, I. M. Ignatjev, R. N. Khairullin, A. V. Zamochkin, and Y. A. Chelyshev, Magn. Reson. Solids 15, 13102 (2013).

    Google Scholar 

  15. T. B. Biktagirov, Y. A. Chelyshev, M. R. Gafurov, G.V. Mamin, S. B. Orlinskii, Y. N. Osin, and M. Kh. Salakhov, J. Phys.: Conf. Ser. 478, 012002 (2013).

    ADS  Google Scholar 

  16. T. Biktagirov, M. Gafurov, G. Mamin, E. Klimashina, V. Putlayev, and S. Orlinskii, J. Phys. Chem. A 118, 1519 (2014).

    Article  Google Scholar 

  17. M. Gafurov, T. Biktagirov, B. Yavkin, G. Mamin, Y. Filippov, E. Klimashina, V. Putlayev, and S. Orlinskii, JETP Lett. 99 (4), 196 (2014).

    Article  ADS  Google Scholar 

  18. T. B. Biktagirov, M. R. Gafurov, G. V. Mamin, S. B. Orlinskii, B. V. Yavkin, A. A. Rodionov, E. S. Klimashina, V. I. Putlyaev, and Ya. Yu. Fillipov, Opt. Spectrosc. 116 (5), 715 (2014).

    Article  ADS  Google Scholar 

  19. M. Gafurov, T. Biktagirov, G. Mamin, and S. Orlinskii, Appl. Magn. Reson. 45, 1189 (2014).

    Article  Google Scholar 

  20. L. G. Gilinskaya and M. Ya. Shcherbakova, in Physics of Apatite, Ed. by V. S. Sobolev (Nauka, Novosibirsk, 1975), pp. 7–63 [in Russian].

  21. P. Fattibene and F. Callens, Appl. Radiat. Isot. 68, 2033 (2010).

    Article  Google Scholar 

  22. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed. (Wiley, Hoboken, New Jersey, 2004).

    Google Scholar 

  23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  24. D. Vanderbilt, Phys. Rev. B: Condens. Matter 41, 7892 (1990).

    Article  ADS  Google Scholar 

  25. H. J. Kulik, M. Cococcioni, D. A. Scherlis, and N. Marzari, Phys. Rev. Lett. 97, 103001 (2006).

    Article  ADS  Google Scholar 

  26. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, et al., J. Phys.: Condens. Matter. 21, 395502 (2009).

    Google Scholar 

  27. E. Ruiz, J. Cano, S. Alvarez, and P. Alemany, J. Comput. Chem. 20, 1391 (1999).

    Article  Google Scholar 

  28. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, England, 1970), p. 541.

    Google Scholar 

  29. L. K. Aminov, V. A. Ivanshin, I. N. Kurkin, M. R. Gafurov, I. Kh. Salikhov, H. Keller, and M. Gutmann, Physica C (Amsterdam) 349, 30 (2001).

    Article  ADS  Google Scholar 

  30. M. R. Gafurov, L. K. Aminov, I. N. Kurkin, and V. V. Izotov, Supercond. Sci. Technol. 18, 352 (2005).

    Article  ADS  Google Scholar 

  31. H. Sato, B. A. Filas, S. S. Eaton, and G. R. Eaton, Radiat. Meas. 42, 997 (2007).

    Article  Google Scholar 

  32. D. J. Hirsh, W. F. Beck, J. B. Innes, and G. W. Brudvig, Biochemistry 31, 532 (1992).

    Article  Google Scholar 

  33. A. V. Kulikov and G. I. Likhtenstein, Adv. Mol. Relax. Interact. Processes 10, 47 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Gafurov.

Additional information

Original Russian Text © M.R. Gafurov, T.B. Biktagirov, G.V. Mamin, D.V. Shurtakova, E.S. Klimashina, V.I. Putlyaev, S.B. Orlinskii, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 3, pp. 458–463.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gafurov, M.R., Biktagirov, T.B., Mamin, G.V. et al. Study of the effects of hydroxyapatite nanocrystal codoping by pulsed electron paramagnetic resonance methods. Phys. Solid State 58, 469–474 (2016). https://doi.org/10.1134/S1063783416030094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416030094

Keywords

Navigation