Skip to main content
Log in

Size effects in electrical and magnetic properties of quasi-one-dimensional tin wires in asbestos

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Bulk composites have been prepared based on one-dimensional fibers of natural chrisothil-asbestos with various internal diameters (d = 6–2.5 nm) filled with tin. The electrical and magnetic properties of quasi-one-dimensional Sn wires have been studied at low temperatures. The electrical properties have been measured at T = 300 K at a pressure P = 10 kbar. It has been found that the superconducting (SC) characteristics of the nanocomposites (critical temperature T c and critical magnetic field H c) increase as the Sn filament diameter decreases. The temperature spreading of the resistive SC transition also increases as the Sn filament diameter decreases, which is explained by the SC order parameter fluctuations. The size effects (the increase in critical temperature T c and transition width ΔT c) in Sn nanofilaments are well described by the independent Aslamazov–Larkin and Langer–Ambegaokara fluctuation theories, which makes it possible to find the dependence of T c of the diffuse SC transition on the nanowire diameter. Using the temperature and magnetic-field dependences of the magnetic moment M(T, H), it has been found that the superconductor–normal metal phase diagram of the Sn–asbestos nanocomposite has a wider region of the SC state in T and H as compared to the data for bulk Sn. The magnetic properties of chrisotil-asbestos fibers unfilled with Sn have been studied. It has been found that the Curie law is fulfilled and that the superparamagnetism is absent in such samples. The obtained results indicate the absence of magnetically ordered impurities (magnetite) in the chrisotil-asbestos matrix, which allowed one to not consider the problem of the interaction of the magnetic subsystem of the asbestos matrix and the superconducting subsystem of Sn nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yu. Arutyunov, D. S. Golubev, and A. D. Zaikin, Phys. Rep. 464, 1 (2006).

    Article  ADS  Google Scholar 

  2. P. C. Hohenberg, in Proceedings of the XI International Conference on Low Temperature Physics, St. Andrews, Scotland, August 21–28, 1968.

  3. B. W. Roberts, J. Phys. Chem. Ref. Data 5, 581 (1976).

    Article  ADS  Google Scholar 

  4. Yu. A. Kumzerov, in Nanostructured Films and Coatings, Ed. by G. M. Chow, I. A. Ovid‘ko, and T. Tsakalakos (Springer-Verlag, Dordrecht, 2000), p. 63.

  5. A. P. Karnaukhov, Adsorption: Texture of Dispersed and Porous Materials (Nauka, Novosibirsk, 1999), p. 346 [in Russian].

    Google Scholar 

  6. L. M. Sorokin, A. E. Kalmykov, A. V. Fokin, and Yu. A. Kumzerov, Tech. Phys. Lett. 40 (4), 296 (2014).

    Article  ADS  Google Scholar 

  7. V. N. Bogomolov, E. V. Kolla, and Yu. A. Kumzerov, Solid State Commun. 46, 159 (1983).

    Article  ADS  Google Scholar 

  8. S. Matsuo, H. Sugiura, and S. Noguchi, J. Low Temp. Phys. 15, 481 (1974).

    Article  ADS  Google Scholar 

  9. N. B. Brandt and N. I. Ginzburg, Sov. Phys.—Usp. 8, 202 (1965).

    Article  ADS  Google Scholar 

  10. W. J. Skocpol and M. Tinkham, Rep. Prog. Phys. 38, 1049 (1975).

    Article  ADS  Google Scholar 

  11. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  12. Tables of Physical Quantities, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976), p. 306 [in Russian].

  13. D. V. Shamshur, A. V. Chernyaev, A. V. Fokin, and S. G. Romanov, Phys. Solid State 47 (11), 2005 (2005).

    Article  ADS  Google Scholar 

  14. L. G. Aslamazov and A. I. Larkin, Sov. Phys. Solid State 10, 875 (1968).

    Google Scholar 

  15. J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1967).

    Article  ADS  Google Scholar 

  16. V. L. Ginzburg, Sov. Phys. JETP 7, 78 (1958).

    Google Scholar 

  17. L. P. Gor’kov, Sov. Phys. JETP 10, 593 (1959).

    MathSciNet  Google Scholar 

  18. G. Stroink, D. Hutt, D. Lim, and R. A. Dunlap, IEEE Trans. Magn. 21 (5), 2074 (1985).

    Article  ADS  Google Scholar 

  19. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974), p. 123.

    Google Scholar 

  20. V. V. Schmidt, The Physics of Superconductors: Introduction to Fundamentals and Applications (Nauka, Moscow, 1982; Springer-Verlag, Berlin, 1997), p. 81.

    Book  Google Scholar 

  21. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1956; Nauka, Moscow, 1978), p. 445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernyaev.

Additional information

Original Russian Text © A.V. Chernyaev, D.V. Shamshur, A.V. Fokin, A.E. Kalmykov, Yu.A. Kumzerov, L.M. Sorokin, R.V. Parfen’ev, A. Lashkul, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 3, pp. 443–450.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyaev, A.V., Shamshur, D.V., Fokin, A.V. et al. Size effects in electrical and magnetic properties of quasi-one-dimensional tin wires in asbestos. Phys. Solid State 58, 454–461 (2016). https://doi.org/10.1134/S1063783416030069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416030069

Keywords

Navigation