Skip to main content
Log in

Determination of the melting temperature of palladium nanoparticles by X-ray absorption spectroscopy

  • Thermal Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The anharmonicity parameters of the interatomic potential in ~4-nm palladium nanoparticles deposited on poly(tetra)fluoroethylene microgranules 0.2–0.5 μm in average size were studied by X-ray absorption spectroscopy from an analysis of temperature-dependent EXAFS Pd K edges. The parameters of the interatomic potential obtained were used to calculate melting temperature T melt = 1591 K and Debye temperature ΘD = 257 K of palladium nanoparticles; these temperatures are significantly lower than those in metallic palladium: 277 K and 1825 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Frenkel and J. J. Rehr, Phys. Rev. B: Condens. Matter 48, 585 (1993).

    Article  ADS  Google Scholar 

  2. N. V. Hung and J. J. Rehr, Phys. Rev. B: Condens. Matter 56, 43 (1997).

    Article  ADS  Google Scholar 

  3. G. Bunker, Nucl. Instrum. Methods Phys. Res. 207, 437 (1983).

    Article  ADS  Google Scholar 

  4. J. M. Tranquada and R. Ingalls, Phys. Rev. B: Condens. Matter 28, 3520 (1983).

    Article  ADS  Google Scholar 

  5. J. Freund, R. Ingalls, and E. D. Grozier, Phys. Rev. B: Condens. Matter 39, 12537 (1989).

    Article  ADS  Google Scholar 

  6. D. E. Sayers and B. Bunker, X-Ray Absorption: Principles, Applications,Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988), p. 211.

    Google Scholar 

  7. J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).

    Article  Google Scholar 

  8. J. J. Rehr and R. C. Albers, Phys. Rev. B: Condens. Matter 41, 8139 (1990).

    Article  ADS  Google Scholar 

  9. N. V. Hung, N. B. Trung, and N. B. Duc, J. Mater. Sci. Appl. 1, 51 (2015).

    Google Scholar 

  10. J. Haug, A. Chassé, R. Schneider, H. Kruth, and M. Dubiel, Phys. Rev. B: Condens. Matter 77, 184115 (2008).

    Article  ADS  Google Scholar 

  11. E. D. Crozier and A. J. Seary, Can. J. Phys. 58, 1388 (1980).

    ADS  Google Scholar 

  12. E. A. Stern, P. Livinc, and Z. Zhang, Phys. Rev. B: Condens. Matter 43, 8850 (1991).

    Article  ADS  Google Scholar 

  13. M. G. Newville, PhD Thesis (University of Washington, Washington, 1995).

    Google Scholar 

  14. L. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959).

    Article  ADS  Google Scholar 

  15. M. Okube and A. Yoshiasa, J. Synchrotron Radiat. 8, 937 (2001).

    Article  Google Scholar 

  16. I. V. Pirog, T. I. Nedoseikina, A. T. Shuvaev, and I. A. Zarubin, J. Phys.: Condens. Matter. 14, 1825 (2002).

    ADS  Google Scholar 

  17. I. V. Pirog and T. I. Nedoseikina, Physica B (Amsterdam) 334, 123 (2003).

    Article  ADS  Google Scholar 

  18. T. Yokoyama, S. Kimoto, and T. Ohta, Jpn. J. Appl. Phys. 28, L851 (1989).

    Article  ADS  Google Scholar 

  19. T. Yokoyama and T. Ohta, Jpn. J. Appl. Phys. 29, 2052 (1990).

    Article  ADS  Google Scholar 

  20. T. Yokoyama, N. Kosugi, K. Asakura, Y. Iwasawa, and H. Kuroda, J. Phys. (Paris) 47, C8273 (1986).

    Article  Google Scholar 

  21. S. P. Gubin, G. Yu. Yurkov, M. S. Korobov, Yu. A. Koksharov, A. V. Kozinkin, I. V. Pirog, S. V. Zubkov, V. V. Kitaev, D. A. Sarichev, V. M. Bouznik, and A. K. Tsvetnikov, Acta Mater. 53, 1407 (2005).

    Article  Google Scholar 

  22. O. A. Belyakova, Y. V. Zubavichus, I. S. Neretin, A. S. Golub, Yu. N. Novikov, E. G. Mednikov, M. N. Vargaftik, I. I. Moiseev, and Y. L. Slovokhotov, J. Alloy Compd. 382, 46 (2004).

    Article  Google Scholar 

  23. G. Guisbiers, J. Nanosci. Lett. 2 (8), 1 (2012).

    Google Scholar 

  24. S. C. Vanithakumari and K. K. Nanda, Phys. Lett. A 372, 6930 (2008).

    Article  ADS  MATH  Google Scholar 

  25. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  ADS  Google Scholar 

  26. M. Attarian Shandiz, A. Safaei, S. Sanjabi, and Z. H. Barber, Solid State Commun. 145, 432 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Vlasenko.

Additional information

Original Russian Text © V.G. Vlasenko, S.S. Podsukhina, A.V. Kozinkin, Ya.V. Zubavichus, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 2, pp. 409–414.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasenko, V.G., Podsukhina, S.S., Kozinkin, A.V. et al. Determination of the melting temperature of palladium nanoparticles by X-ray absorption spectroscopy. Phys. Solid State 58, 421–426 (2016). https://doi.org/10.1134/S1063783416020335

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416020335

Keywords

Navigation