Skip to main content
Log in

Raman scattering in sodium nitrite crystals near the phase transition

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Optical Raman spectra of a ferroelectric sodium nitrite crystal have been detected in a wide spectrum range at various temperatures, including the region of the ferroelectric phase transition. A manifestation of a transverse soft polar mode of the A 1(z) type responsible for the ferroelectric phase transition has been discovered in the spectrum at room temperature. This mode has been found to become overdamped even far from the ferroelectric phase transition temperature. This mode also appears as a central peak under heating. It has been found that the pseudoscalar mode of the A 2 type has the highest intensity in the Raman spectrum of sodium nitrite. The frequency corresponding to the maximum intensity of this mode in the Raman spectrum varies from 130 cm–1 at 123 K to 106 cm–1 at T = 513 K. A fair agreement of the experimental data for the A 1(z) mode with the Lyddane–Sachs–Teller relation has been established. The polariton curves for the A 1(z) polar mode and the dispersion curves for axinons has been plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J. M. Wills, Phys. Rev. B: Condens. Matter 59, 1776 (1999).

    Article  ADS  Google Scholar 

  2. J. Köhler and D. Schmid, J. Phys.: Condens. Matter 8, 115 (1996).

    ADS  Google Scholar 

  3. B. Strijk and C. H. Mac Gillavry, Recl. Trav. Chim. Pays-Bus. 62, 705 (1943).

    Article  Google Scholar 

  4. R. W. G. Wyckoff, Crystal Structures, Vol. 2: Inorganic Compounds RXn, RnMX2, RnMX3 (Interscience, New York, 1964).

    Google Scholar 

  5. F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon, Oxford, 1962).

    Google Scholar 

  6. G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, and M. S. Shur, Ferroelectrics and Antiferroelectrics (Nauka, Leningrad, 1971) [in Russian].

    Google Scholar 

  7. Yu. P. Voinov, V. S. Gorelik, K. I. Zaitsev, L. I. Zlobina, P. P. Sverbil’, and S. O. Yurchenko, Phys. Solid State 57 (3), 453 (2015).

    Article  ADS  Google Scholar 

  8. K. I. Zaytsev and S. O. Yurchenko, Appl. Phys. Lett. 105, 051902 (2014).

    Article  ADS  Google Scholar 

  9. P. F. Zil’berman and P. A. Savintsev, Sov. Tech. Phys. Lett. 14 (1), 64 (1988).

    Google Scholar 

  10. V. L. Ginzburg, Usp. Fiz. Nauk 38, 490 (1949).

    Google Scholar 

  11. J. D. Axe, Phys. Rev. 167, 573 (1968).

    Article  ADS  Google Scholar 

  12. M. K. Barnoski and J. M. Ballantyne, Phys. Rev. 174, 946 (1968).

    Article  ADS  Google Scholar 

  13. K. Suzuki, S. Sawada, F. Sugawara, and T. Nakamura, J. Phys. Soc. Jpn. 26, 1199 (1969).

    Article  ADS  Google Scholar 

  14. H. Vogt and H. Happ, Phys. Status Solidi B 16, 711 (1966).

    Article  ADS  Google Scholar 

  15. F. Brehat and B. Wyncke, J. Phys. C: Solid State Phys. 18, 1705 (1985).

    Article  ADS  Google Scholar 

  16. B. Wyncke, F. Brehat, M. El. Sherif, and G. V. Kozlov, Phys. Status Solidi B 125, 493 (1984).

    Article  ADS  Google Scholar 

  17. E. V. Chisler and M. S. Shur, Phys. Status Solidi B 17, 163 (1966).

    Article  ADS  Google Scholar 

  18. C. M. Hartwig, E. Wiener-Avnear, and S. P. S. Porto, Phys. Rev. B: Solid State 5, 79 (1972).

    Article  ADS  Google Scholar 

  19. C. K. Asawa and M. K. Barnoski, Phys. Rev. B: Solid State 2, 205 (1972).

    Article  ADS  Google Scholar 

  20. C. W. yon der Lieth and H. H. Eysel, J. Raman Spectrosc. 13, 120 (1982).

    Article  ADS  Google Scholar 

  21. H. H. Eysel, C. W. von der Lieth, G. Bertsch, and M. H. Brooker, Mol. Phys. 44, 395 (1981).

    Article  ADS  Google Scholar 

  22. M. Tsuboi, M. Terada, and T. Kajiura, Bull. Chem. Soc. Jpn. 41, 2545 (1968).

    Article  Google Scholar 

  23. M. Tsuboi, M. Terada, and T. Kajiura, Bull. Chem. Soc. Jpn. 42, 1871 (1969).

    Article  Google Scholar 

  24. Y. Yamada, I. Shibuya, and S. Hoshino, J. Phys. Soc. Jpn. 18, 1594 (1963).

    Article  ADS  Google Scholar 

  25. S. Hoshino, J. Phys. Soc. Jpn. 19, 140 (1964).

    Article  ADS  Google Scholar 

  26. G. Ya. Lyubarskii, The Application of Group Theory in Physics (GIFML, Moscow, 1958; Pergamon, London, 1960).

    Google Scholar 

  27. R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).

    Article  MATH  ADS  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Butterworth–Heinemann, Oxford, 1991).

    Google Scholar 

  29. L. B. Okun’, Sov. Phys. JETP 56 (3), 502 (1982).

    Google Scholar 

  30. K. van Bibber, N. R. Dagdeviren, S. E. Koonin, A. K. Kerman, and H. N. Nelson, Phys. Rev. Lett. 59, 759 (1987).

    Article  ADS  Google Scholar 

  31. L. D. Duffy, P. Sikivie, D. B. Tanner, S. J. Asztalos, C. Hagmann, D. Kinion, L. J. Rosenberg, K. van Bibber, D. B. Yu, and R. F. Bradley, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 74, 012006 (2006).

    Article  Google Scholar 

  32. P. Sikivie, D. B. Tanner, and K. van Bibber, Phys. Rev. Lett. 98, 172002 (2007).

    Article  ADS  Google Scholar 

  33. A. Afanasev, O. K. Baker, K. B. Beard, G. Biallas, J. Boyce, M. Minarni, R. Ramdon, M. Shinn, and P. Slocum, Phys. Rev. Lett. 101, 120401 (2008).

    Article  ADS  Google Scholar 

  34. S. Hoffmann, Phys. Lett. B 193, 117 (1987).

    Article  ADS  Google Scholar 

  35. R. Cameron, G. Cantatore, A. C. Melissinos, G. Ruoso, Y. Semertzidis, H. J. Halama, D. M. Lazarus, A. G. Prodell, F. Nezrick, C. Rizzo, and E. Zavattini, Phys. Rev. D: Part. Fields 47, 3707 (1993).

    Article  ADS  Google Scholar 

  36. G. Ruoso, R. Cameron, G. Cantatore, A. Melissinos, Y. Semertzidis, H. Halama, D. Lazarus, A. Prodell, F. Nezrick, C. Rizzo, and E. Zavattini, Z. Phys. C: Part. Fields 56, 505 (1991).

    Article  Google Scholar 

  37. V. S. Gorelik, Kratk. Soobshch. Fiz. 42, 40 (2015).

    Google Scholar 

  38. C. Beck, Phys. Rev. Lett. 111, 231 801 (2013).

    Article  Google Scholar 

  39. C. Hoffmann, F. Lefloch, and M. Sanquer, Phys. Rev. B: Condens. Matter 70, 180503 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Original Russian Text © V.S. Gorelik, A.Yu. Pyatyshev, A.S. Krylov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 1, pp. 163–169.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelik, V.S., Pyatyshev, A.Y. & Krylov, A.S. Raman scattering in sodium nitrite crystals near the phase transition. Phys. Solid State 58, 170–176 (2016). https://doi.org/10.1134/S1063783416010133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416010133

Keywords

Navigation