Skip to main content

Critical scattering of synchrotron radiation in lead zirconate–titanate with low titanium concentrations

Abstract

Diffuse scattering in the lead zirconate–titanate single crystal with a titanium concentration of 0.7 at % has been studied by the synchrotron radiation scattering method. Measurements have been performed both in the vicinity of the Brillouin zone center and at the M-point. Highly anisotropic diffuse scattering has been revealed in the paraelectric phase near the Brillouin zone center; diffuse scattering anisotropy is similar to that previously observed in pure lead zirconate. The temperature dependence of this diffuse scattering obeys a critical law with T c ≈ 480 K. Diffuse scattering in the vicinity of the M-point weakly depends on temperature; this dependence behaves differently at M-points with various indices.

This is a preview of subscription content, access via your institution.

References

  1. G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  Google Scholar 

  2. I. Grinberg, V. R. Cooper, and A. M. Rappe, Nature (London) 419, 909 (2002).

    Article  ADS  Google Scholar 

  3. F. Cordero, F. Trequattrini, F. Craciun, and C. Galassi, J. Phys.: Condens. Matter 23, 415901 (2011).

    Google Scholar 

  4. B. Jaffe, W. J. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971).

    Google Scholar 

  5. G. Shirane and S. Hoshino. Phys. Rev. 86, 248 (1952).

    Article  ADS  Google Scholar 

  6. Z. Xu, X. Dai, D. Viehland, D. A. Payne, Z. Li, and Y. Jiang, J. Am. Ceram. Soc. 78, 2220 (1995).

    Article  Google Scholar 

  7. N. G. Leont’ev, A. V. Leiderman, I. N. Leont’ev, and O. E. Fesenko, Phys. Solid State 40 (7), 1204 (1998).

    Article  ADS  Google Scholar 

  8. D. Viehland, Phys. Rev. B: Condens. Matter 52, 778 (1995).

    Article  ADS  Google Scholar 

  9. H. Fujishita and S. Hoshino, J. Phys. Soc. Jpn. 53, 226 (1984).

    Article  ADS  Google Scholar 

  10. A. M. Glazer and S. A. Mabud, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 34, 1060 (1978).

    Article  Google Scholar 

  11. O. E. Fesenko, V. G. Smotrakov, and N. G. Leont’ev, Izv. Akad. Nauk SSSR, Ser. Fiz. 47, 643 (1983).

    Google Scholar 

  12. M. D. Glinchuk and R. O. Kuzian, J. Korean Phys. Soc. 32, S121 (1998).

    Google Scholar 

  13. A. Ghosh and D. Damjanovic, Appl. Phys. Lett. 99, 23 (2011).

    Google Scholar 

  14. R. Xu and T. C. Chiang, Z. Kristallogr. 220, 1009 (2005).

    Article  Google Scholar 

  15. A. Bosak and D. Chernyshov, Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 598 (2008).

    Article  ADS  Google Scholar 

  16. M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  17. R. A. Cowley, S. N. Gvasaliya, S. G. Lushnikov, B. Roessli, and G. M. Rotaru, Adv. Phys. 60, 229 (2011).

    Article  ADS  Google Scholar 

  18. P. M. Gehring, H. Hiraka, C. Stock, S. H. Lee, W. Chen, Z. G. Ye, S. B. Vakhrushev, and Z. Chowdhuri, Phys. Rev. B: Condens. Matter 79, 224109 (2009).

    Article  ADS  Google Scholar 

  19. D. Chernyshov, V. Dyadkin, and A. Bosak, Phase Transform. 88, 264 (2015).

    Article  Google Scholar 

  20. A. M. Glazer, P. A. Thomas, K. Z. Baba-Kishi, G. K. H. Pang, and C. W. Tai, Phys. Rev. B: Condens. Matter 70, 184123 (2004).

    Article  ADS  Google Scholar 

  21. K. Z. Baba-Kishi, T. R. Welberry, and R. L. Withers, J. Appl. Crystallogr. 41, 930 (2008).

    Article  Google Scholar 

  22. T. R. Welberry, D. J. Goossens, R. L. Withers, and K. Z. Baba-Kishi, Metall. Mater. Trans. A 41, 1110 (2010).

    Article  Google Scholar 

  23. Y. Kuroiwa, Y. Terado, S. J. Kim, A. Sawada, Y. Yamamura, S. Aoyagi, E. Nishibori, M. Sakata, and M. Takata, Jpn. J. Appl. Phys. 44, 7151 (2005).

    Article  ADS  Google Scholar 

  24. B. D. Chapman, E. A. Stern, S. W. Han, J. O. Cross, G. T. Seidler, V. Gavrilyatchenko, R. V. Vedrinskii, and V. L. Kraizman, Phys. Rev. B: Condens. Matter 71, 020102 (2005).

    Article  ADS  Google Scholar 

  25. A. K. Tagantsev, K. Vaideeswaran, S. B. Vakhrushev, A. V. Filimonov, R. G. Burkovsky, A. Shaganov, D. Andronikova, A. I. Rudskoy, A. Q. R. Baron, H. Uchiyama, D. Chernyshov, A. Bosak, Z. Ujma, K. Roleder, A. Majchrowski, et al., Nat. Commun. 4, 2229 (2013).

    Article  ADS  Google Scholar 

  26. R. G. Burkovsky, A. K. Tagantsev, K. Vaideeswaran, N. Setter, S. B. Vakhrushev, A. V. Filimonov, A. Shaganov, D. Andronikova, A. I. Rudskoy, A. Q. R. Baron, H. Uchiyama, D. Chernyshov, Z. Ujma, K. Roleder, A. Majchrowski, and J. H. Ko, Phys. Rev. B: Condens. Matter 90, 144301 (2014).

    Article  ADS  Google Scholar 

  27. M. Pasciak, T. R. Welberry, A. P. Heerdegen, V. Laguta, T. Ostapchuk, S. Leoni, and J. Hlinka, Phase Transform. 88, 273 (2015).

    Article  Google Scholar 

  28. R. G. Burkovsky, A. V. Filimonov, A. I. Rudskoy, K. Hirota, M. Matsuura, and S. B. Vakhrushev, Phys. Rev. B: Condens. Matter 85, 094108 (2012).

    Article  ADS  Google Scholar 

  29. N. G. Leont’ev, V. G. Smotrakov, and E. G. Fesenko, Izv. Akad. Nauk SSSR, Neorg. Mater. 18, 449 (1982).

    Google Scholar 

  30. V. Dyadkin, SNBL Tool Box (Swiss-Norwegian Beam Lines at ESRF, Grenoble, France, 2014).

    Google Scholar 

  31. CrysAlis (Rigaku Oxford Diffraction, Abingdon, England, 2006).

  32. A. Brause and R. Cowley, Structural Phase Transitions (Taylor and Francis 1981; Mir, Moscow, 1984).

    Google Scholar 

  33. A. I. Izyumov and N. A. Chernoplekov, Neutrons and Solid Body (Energoatomizdat, Moscow, 1983), Vol. 3 [in Russian].

    Google Scholar 

  34. K. Roleder, G. E. Kugel, M. D. Fontana, J. Handerek, S. Lahlou, and C. Carabatos-Nedelec, J. Phys.: Condens. Matter 1, 2257 (1989).

    ADS  Google Scholar 

  35. K. Roleder, I. Jankowska-Sumara, G. E. Kugel, M. Maglione, M. D. Fontana, and J. Dec, Phase Transform. 71, 287 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Andronikova.

Additional information

Original Russian Text © D.A. Andronikova, A.A. Bosak, Iu.A. Bronwald, R.G. Burkovsky, S.B. Vakhrushev, N.G. Leontiev, I.N. Leontiev, A.K. Tagantsev, A.V. Filimonov, D.Yu. Chernyshov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 12, pp. 2368–2373.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andronikova, D.A., Bosak, A.A., Bronwald, I.A. et al. Critical scattering of synchrotron radiation in lead zirconate–titanate with low titanium concentrations. Phys. Solid State 57, 2441–2446 (2015). https://doi.org/10.1134/S1063783415120045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415120045

Keywords

  • Synchrotron Radiation
  • Diffuse Scattering
  • Lead Zirconate
  • Paraelectric Phase
  • Reciprocal Lattice Vector