Skip to main content
Log in

Electronic band structure and properties of the solid solution Eu1–x Fe x O

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic band structure of the solid solution Eu1–x Fe x O (x = 0.0625, 0.125) involved in the composition of the spintronic composite EuO: Fe has been calculated using the full-potential linearized augmented- plane-wave (FLAPW) method. The calculations have been performed with the correction of the exchange–correlation potential in the framework of the generalized gradient approximation (GGA + U). It has been shown that iron and europium cations have the oxidation state close to 2+. In this case, the iron cations are in the high-spin state with the magnetic moment close to 4 μB, which explains the significant increase in the Curie temperature of the composite upon doping of EuO with iron. It has been demonstrated that there is a small transfer of the electron density from Eu2+ cations to Fe2+ cations. It has been argued that the main factor providing a high concentration of Eu3+ cations in the composite is, probably, the presence of Eu2O3 nanoclusters in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Austria)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  2. G. V. Lashkarev, M. V. Radchenko, V. A. Karpina, and V. I. Sichkovskyi, Low Temp. Phys. 33 (2/3), 165 (2007).

    Article  ADS  Google Scholar 

  3. S. A. Chambers, T. Droubay, C. M. Wang, A. S. Lea, R. F. C. Farrow, L. Folks, V. Deline, and S. Anders, Appl. Phys. Lett. 82, 1257 (2003).

    Article  ADS  Google Scholar 

  4. L. A. Balagurov, S. O. Klimonskii, S. P. Kobeleva, A. F. Orlov, N. S. Perov, and D. G. Yarkin, JETP Lett. 79 (2), 98 (2004).

    Article  ADS  Google Scholar 

  5. G. D. Nipan, V. A. Ketsko, A. I. Stognii, and N. T. Kuznetsov, Inorg. Mater. 46 (13), 35 (2010).

    Article  Google Scholar 

  6. M. I. Auslender and V. Yu. Irkhin, Solid State Commun. 50, 1003 (1984).

    Article  ADS  Google Scholar 

  7. A. S. Borukhovich, Physics of Materials and Structures of Superconductor and Semiconductor Spin Electronics (Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2004) [in Russian].

    Google Scholar 

  8. A. S. Borukhovich, N. I. Ignat’eva, and V. G. Bamburov, Dokl. Phys. 50 (5), 239 (2005).

    Article  ADS  Google Scholar 

  9. N. I. Ignat’eva, A. S. Shkvarin, V. I. Osotov, and L. D. Finkel’shtein, Russ. J. Inorg. Chem. 54 (10), 1517 (2009).

    Article  Google Scholar 

  10. A. S. Borukhovich, A. I. Galyas, O. F. Demidenko, V. Dyakonov, V. A. Ketsko, N. I. Ignat’eva, N. N. Novitskii, A. I. Stognij, H. Szymczak, and K. I. Yanushkevich, Inorg. Mater. 45 (3), 254 (2009).

    Article  Google Scholar 

  11. H. Wang, C. Schuster, and U. Schwingenschlögl, Chem. Phys. Lett. 524, 68 (2012).

    Article  ADS  Google Scholar 

  12. J. M. An and K. D. Belashchenko, Phys. Rev. B: Condens. Matter 88 (5), 054421 (2013).

    Article  ADS  Google Scholar 

  13. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, Wien2k: An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystal Properties (University of Technology, Vienna, Austria, 2008).

    Google Scholar 

  14. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  15. V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Phys. Rev. B: Condens. Matter 48, 16929 (1993).

    Article  ADS  Google Scholar 

  16. Z. Novotny, N. Mulakaluri, Z. Edes, M. I. Schmid, R. Pentcheva, U. Diebold, and G. S. Parkinson, Phys. Rev. B: Condens. Matter 87, 195410 (2013).

    Article  ADS  Google Scholar 

  17. P. G. Steeneken, L. H. Tjeng, I. Elfimov, G. A. Sawatzky, G. Ghiringhelli, N. B. Brookes, and D.-J. Huang, Phys. Rev. Lett. 88, 047201 (2002).

    Article  ADS  Google Scholar 

  18. D. E. Eastman, F. Holtzberg, and S. Methfessel, Phys. Rev. Lett. 23, 226 (1969).

    Article  ADS  Google Scholar 

  19. A. S. Borukhovich, N. I. Ignat’eva, K. I. Yanushkevich, A. I. Stognii, and Yu. A. Fedotova, JETP Lett. 89 (4), 191 (2009).

    Article  ADS  Google Scholar 

  20. S. A. Nemov, A. V. Marchenko, P. P. Seregin, and E. A. Tomil’tsev, Glass Phys. Chem. 33 (6), 658 (2007).

    Article  Google Scholar 

  21. K. Tanaka, N. Tatehata, K. Fujita, and K. Hirao, J. Appl. Phys. 89 (4), 2213 (2001).

    Article  ADS  Google Scholar 

  22. T. Tachikawa, M. Fujisuka, and T. Majima, J. Phys. Chem. B 108, 17466 (2004).

    Article  Google Scholar 

  23. J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, and L. Zhang, Appl. Catal., B 62, 329 (2006).

    Article  Google Scholar 

  24. V. N. Krasil’nikov, V. P. Zhukov, L. A. Perelyaeva, I. V. Baklanova, and I. R. Shein, Phys. Solid State 55 (9), 1903 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Anoshina.

Additional information

Original Russian Text © O.V. Anoshina, V.P. Zhukov, A.S. Borukhovich, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 11, pp. 2115–2120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoshina, O.V., Zhukov, V.P. & Borukhovich, A.S. Electronic band structure and properties of the solid solution Eu1–x Fe x O. Phys. Solid State 57, 2173–2178 (2015). https://doi.org/10.1134/S1063783415110037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415110037

Keywords

Navigation