Skip to main content
Log in

Ab initio calculations of optical constants of GaSe and InSe layered crystals

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dielectric functions, refractive indices, and extinction coefficients of GaSe and InSe layered crystals have been calculated within the density functional theory. The calculations have been performed for the values of theoretical structural parameters optimized using the exchange-correlation functional, which allows one to take into account the dispersion interactions. It has been found that optical functions are characterized by the most pronounced polarization anisotropy in the range of photon energies of ∼4–7 eV. The frequency dependences for InSe compound in the range up to 4 eV demonstrate the more pronounced anisotropy as compared to GaSe. The results obtained for GaSe crystal agree better with the experimental data as compared to the previous calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Shi and Y. J. Ding, Int. J. High Speed Electron. Syst. 16, 589 (2006).

    Article  MathSciNet  Google Scholar 

  2. A. Sell, A. Leitenstorfer, and R. Huber, Opt. Lett. 33, 2767 (2008).

    Article  ADS  Google Scholar 

  3. O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, Nat. Photonics 8, 119 (2014).

    Article  ADS  Google Scholar 

  4. M. M. Nazarov, S. Yu. Sarkisov, A. P. Shkurinov, and O. P. Tolbanov, Appl. Phys. Lett. 99, 081105 (2011).

    Article  ADS  Google Scholar 

  5. R. Hegenbarth, A. Steinmann, S. Yu. Sarkisov, and H. Giessen, Opt. Lett. 37, 3513 (2012).

    Article  ADS  Google Scholar 

  6. R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, J. Opt. 16, 094003 (2014).

    Article  ADS  Google Scholar 

  7. A. P. Bakhtinov, V. N. Vodop’yanov, Z. D. Kovalyuk, Z. R. Kudrinskyi, V. V. Netyaga, V. V. Vishnjak, V. L. Karbovskyi, and O. S. Lytvyn, Phys. Solid State 56 (10), 2118 (2014).

    Article  Google Scholar 

  8. A. V. Kosobutsky, S. Yu. Sarkisov, and V. N. Brudnyi, J. Phys. Chem. Solids 74, 1240 (2013).

    Article  ADS  Google Scholar 

  9. D. Olguin, A. Rubio-Ponce, and A. Cantarero, Eur. Phys. J. B 86, 350 (2013).

    Article  ADS  Google Scholar 

  10. Zs. Rak, S. D. Mahanti, K. C. Mandal, and N. C. Fernelius, Phys. Rev. B: Condens. Matter 82, 155203 (2010).

    Article  ADS  Google Scholar 

  11. V. N. Brudnyi, A. V. Kosobutsky, and S. Yu. Sarkisov, Semiconductors 44 (9), 1158 (2010).

    Article  ADS  Google Scholar 

  12. S.-R. Zhang, S.-F. Zhu, B.-J. Zhao, L.-H. Xie, and K.-H. Song, Physica B 436, 188 (2014).

    Article  ADS  Google Scholar 

  13. M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

    Article  ADS  Google Scholar 

  14. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B: Condens. Matter 82, 081101 (2010).

    Article  ADS  Google Scholar 

  15. V. R. Cooper, Phys. Rev. B: Condens. Matter 81, 161104 (2010).

    Article  ADS  Google Scholar 

  16. P. Giannozzi, S. Baroni, and N. Bonini, J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  17. E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. Garcia, J. Junquera, R. M. Martin, P. Ordejon, J. M. Pruneda, D. Sanchez-Portal, and J. M. Soler, J. Phys.: Condens. Matter 20, 064208 (2008).

    ADS  Google Scholar 

  18. A. Gouskov, J. Camassel, and L. Gouskov, Prog. Cryst. Growth Charact. 5, 323 (1982).

    Article  Google Scholar 

  19. K. Cenzual, L. Louise, M. Gelato, M. Penzo, and E. Parthe, Acta Crystallogr., Sect. B: Struct. Sci. 47, 433 (1991).

    Article  Google Scholar 

  20. J. Rigoult, A. Rimsky, and A. Kuhn, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 916 (1980).

    Article  Google Scholar 

  21. K. L. Vodopyanov and L. A. Kulevskii, Opt. Commun. 118, 375 (1995).

    Article  ADS  Google Scholar 

  22. S. Yu. Sarkisov, V. V. Atuchin, T. A. Gavrilova, V. N. Kruchinin, S. A. Bereznaya, Z. V. Korotchenko, O. P. Tolbanov, and A. I. Chernyshov, Russ. Phys. J. 53 (4), 346 (2010).

    Article  Google Scholar 

  23. S. G. Choi, D. H. Levi, C. Martinez-Tomas, and V. Munoz, J. Appl. Phys. 106, 053517 (2009).

    Article  ADS  Google Scholar 

  24. D. Errandonea, A. Segura, and V. Munoz, Phys. Rev. B: Condens. Matter 60, 15866 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Sarkisov.

Additional information

Original Russian Text © S.Yu. Sarkisov, A.V. Kosobutsky, V.N. Brudnyi, Yu.N. Zhuravlev, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 9, pp. 1693–1697.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkisov, S.Y., Kosobutsky, A.V., Brudnyi, V.N. et al. Ab initio calculations of optical constants of GaSe and InSe layered crystals. Phys. Solid State 57, 1735–1740 (2015). https://doi.org/10.1134/S1063783415090309

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415090309

Keywords

Navigation