Skip to main content
Log in

Specific features of the properties of lattice vibrations in the Cd1–y Hg y Te alloy formed by the CdTe semiconductor and the HgTe semimetal

  • Lattice Dynamics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The specific features of the properties of Hg-Te lattice vibrations have been considered within the percolation model of a mixed Cd1–y Hg y Te crystal (alloy), in which the composite medium is formed by the alloy regions enriched in HgTe and CdTe with different Hg-Te vibrational states and, hence, with different characteristics of vibrational modes (frequency and damping parameter). In the HgTe-enriched alloy, the properties of Hg-Te lattice vibrations are determined by a double-well lattice potential for the Hg atom with the off-center localization at low temperatures. In the CdTe-enriched alloys, the properties of Hg-Te lattice vibrations are determined by a single-well lattice potential for the Hg atom in the center of the anion tetrahedron, and the Hg-Te vibrational states are localized. For the HgTe-enriched alloy, the Hg-Te vibrational states are extended. In the percolation scheme of the transformation of the vibrational spectrum of the Cd1 - y Hg y Te alloy with the composition y, the “137 cm−1” mode is a split-off mode of Hg-Te vibrations, or one of the modes of the percolation doublet of HgTe-like vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. E. Chang and S. S. Mitra, Adv. Phys. 20, 359 (1971).

    Article  ADS  Google Scholar 

  2. O. Pagès, M. Ajjoun, D. Bormann, C. Chauvet, E. Tournié, and J. P. Faurie, Phys. Rev. B: Condens. Matter 65, 035213 (2002).

    Article  ADS  Google Scholar 

  3. D. Stauffer, Introduction to Percolation Theory (Taylor, London, 1985).

    Book  MATH  Google Scholar 

  4. O. Pagès, T. Tite, K. Kim, P. A. Graf, O. Maksimov, and M. C. Tamargo, J. Phys.: Condens. Matter 18, 577 (2006).

    ADS  Google Scholar 

  5. S. P. Kozyrev, Semiconductors 48 (10), 1261 (2014)

    Article  ADS  Google Scholar 

  6. S. P. Kozyrev, Semiconductors 49 (2015) (in press).

  7. S. P. Kozyrev, Phys. Solid State 54 (9), 1857 (2012).

    Article  ADS  Google Scholar 

  8. M. Bernasconi, L. Colombo, and L. Miglio, Phys. Rev. B: Condens. Matter 43, 14447 (1991).

    Article  ADS  Google Scholar 

  9. S. H. Wei and A. Zunger, Phys. Rev. B: Condens. Matter 37, 8958 (1988).

    Article  ADS  Google Scholar 

  10. Duan He, Dong You-Zhong, Huang Yan, and Chen Xiao-Shuang, Chin. Phys. B 20, 043103 (2011).

    Article  ADS  Google Scholar 

  11. G. G. Tarasov, Yu. I. Mazur, A. S. Rakitin, M. P. Lisitsa, S. R. Lavoric, J. W. Tomm, and A. P. Lityinchuk, Asian J. Spectrosc. 2, 1 (1998).

    Google Scholar 

  12. A. Rakitin and M. Kobayashi, Phys. Rev. B: Condens. Matter 53, 3088 (1996).

    Article  ADS  Google Scholar 

  13. H. W. Verleur and A. S. Barker, Phys. Rev. 149, 715 (1966).

    Article  ADS  Google Scholar 

  14. S. P. Kozyrev, V. N. Pyrkov, and L. K. Vodop’yanov, Sov. Phys. Solid State 34 (12), 1978 (1992).

    Google Scholar 

  15. S. P. Kozyrev and V. S. Vinogradov, Phys. Solid State 52 (3), 574 (2010).

    Article  ADS  Google Scholar 

  16. Yu. A. Aleshchenko and L. K. Vodop’yanov, Sov. Phys. Solid State 28 (9), 1623 (1986).

    Google Scholar 

  17. A. Lusson and J. Wagner, Phys. Rev. B: Condens. Matter 38, 10064 (1988).

    Article  ADS  Google Scholar 

  18. A. Ksendzov, F. H. Pollak, P. M. Amirtharaj, and J. A. Wilson, Semicond. Sci. Technol. 5, S78 (1990).

    Article  ADS  Google Scholar 

  19. P. H. Song and D. S. Kim, Phys. Rev. B: Condens. Matter 54, R2288 (1996).

    Article  ADS  Google Scholar 

  20. S. P. Kozyrev, Phys. Solid State 55 (2), 419 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  21. D. N. Talwar and M. Vandevyver, J. Appl. Phys. 56, 1601 (1984).

    Article  ADS  Google Scholar 

  22. H. Kepa and T. Giebultowicz, Phys. Scr. 25, 807 (1982).

    Article  ADS  Google Scholar 

  23. V. S. Vinogradov, Sov. Phys. Solid State 11 (8), 1666 (1969)

    Google Scholar 

  24. L. K. Vodop’yanov, E. A. Vinogradov, and V. S. Vinogradov, Sov. Phys. Solid State 16 (3), 545 (1974)

    Google Scholar 

  25. O. Pagès, A. V. Postnikov, M. Kassem, A. Chafi, A. Nassour, and S. Doyen, Phys. Rev. B: Condens. Matter 77, 125208 (2008).

    Article  ADS  Google Scholar 

  26. M. I. Vasilevskiy, A. I. Belogorokhov, and M. J. M. Gomes, J. Electron. Mater. 28, 654 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kozyrev.

Additional information

Original Russian Text © S.P. Kozyrev, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 9, pp. 1790–1797.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyrev, S.P. Specific features of the properties of lattice vibrations in the Cd1–y Hg y Te alloy formed by the CdTe semiconductor and the HgTe semimetal. Phys. Solid State 57, 1837–1845 (2015). https://doi.org/10.1134/S1063783415090206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415090206

Keywords

Navigation