Skip to main content
Log in

Electronic structure and optical properties of the Pr5Ge3 compound

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic structure and optical properties of the hexagonal intermetallic compound Pr5Ge3 have been studied. The spin-polarization calculations of the band spectrum have been performed in the approximation of local electron density with allowance for strong electron correlations in 4f shell of the rareearth ion. In the wavelength range λ = 0.22–15 µm, the optical constants of the compound have been measured by the ellipsometric method, and a number of spectral and electronic characteristics have been determined. The experimental dependence of the optical conductivity in the region of quantum absorption of light have been interpreted based on the results of calculating the density of electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Schobinger-Papamantellos and K. H. J. Buschow, J. Magn. Magn. Mater. 49, 349 (1985).

    Article  ADS  Google Scholar 

  2. F. Canepa, S. Cirafici, and M. Napoletano, J. Alloys Compd. 335, L1 (2002).

    Article  Google Scholar 

  3. A. P. Vokhmyanin and Yu. A. Dorofeev, Phys. Solid State 45 (9), 1735 (2003).

    Article  ADS  Google Scholar 

  4. A. P. Vokhmyanin, Yu. A. Dorofeev, A. I. Kurbakov, A. N. Pirogov, and Yu. N. Skryabin, Crystallogr. Rep. 52 (3), 420 (2007).

    Article  ADS  Google Scholar 

  5. A. V. Morozkin, O. Isnard, P. Henry, and P. Manfrinetti, J. Magn. Magn. Mater. 307, 124 (2006).

    Article  ADS  Google Scholar 

  6. A. V. Morozkin, O. Isnard, and S. A. Granovsky, Intermetallics 19, 871 (2011).

    Article  Google Scholar 

  7. T. Tsutaoka, Y. Nishiume, and T. Tokunaga, J. Magn. Magn. Mater. 272–276, e421 (2004).

    Article  Google Scholar 

  8. M. Nagai, A. Tanaka, Y. Haga, and T. Tsutaoka, J. Magn. Magn. Mater. 310, 1775 (2007).

    Article  ADS  Google Scholar 

  9. T. Tsutaoka, A. Tanaka, Y. Narumi, M. Iwaki, and K. Kindo, Physica B (Amsterdam) 405, 180 (2010).

    Article  ADS  Google Scholar 

  10. B. Maji, K. G. Suresh, and A. K. Nigam, J. Phys.: Condens. Matter 23, 506002 (2011).

    ADS  Google Scholar 

  11. M. Doerr, M. Rotter, A. Devishvili, A. Stunault, J. J. Perenboom, T. Tsutaoka, A. Tanaka, Y. Narumi, M. Zschintzsch, and M. Loewenhaupt, J. Phys.: Conf. Ser. 150, 042025 (2009).

    ADS  Google Scholar 

  12. N. Mohapatra, K. Mukherjee, K. K. Iyer, and E. V. Sampathkumaran, J. Phys.: Condens. Matter 23, 496001 (2011).

    Google Scholar 

  13. B. Maji, K. G. Suresh, and A. K. Nigam, Europhys. Lett. 91, 37007 (2010).

    Article  ADS  Google Scholar 

  14. P. Kushwaha and R. Rawat, Solid State Commun. 152, 1824 (2012).

    Article  ADS  Google Scholar 

  15. B. Maji, K. G. Suresh, X. Chen, and R. V. Ramanujan, J. Appl. Phys. 111, 073905 (2012).

    Article  ADS  Google Scholar 

  16. Ya. Mudryk, D. Paudyal, V. K. Pecharsky, and K. A. Gschneidner, Phys. Rev. B 85, 014116 (2012).

    Article  ADS  Google Scholar 

  17. M. Djermouni, M. Belhadj, S. Kacimi, and A. Zaoui, Mod. Phys. Lett. B 25, 2427 (2011).

    Article  ADS  Google Scholar 

  18. Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, B. Maji, and K. G. Suresh, J. Alloys Compd. 588, 725 (2014).

    Article  Google Scholar 

  19. Yu. V. Knyazev, A. V. Lukoyanov, and Yu. I. Kuz’min, Physica B (Amsterdam) 442, 12 (2014).

    Article  ADS  Google Scholar 

  20. D. A. Joshi, A. Thamizhavel, and S. K. Dhar, Phys Rev. B 79, 014425 (2009).

    Article  ADS  Google Scholar 

  21. R. Nirmala, A. V. Morozkin, A. K. Nigam, J. Lamsal, W. B. Yelon, O. Isnard, S. A. Granovsky, K. K. Bharathi, S. Quezado, and S. K. Malik, J. Appl. Phys. 109, 07A716 (2011).

  22. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  24. M. Topsakal and R. M. Wentzcovitch, Comput. Mater. Sci. 95, 263 (2014).

    Article  Google Scholar 

  25. N. A. W. Holzwarth, A. R. Tackett, and G. E. Matthews, Comput. Phys. Commun. 135, 329 (2001).

    Article  ADS  MATH  Google Scholar 

  26. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).

    ADS  Google Scholar 

  27. C. N. Berglund and W. E. Spicer, Phys. Rev. A 136, A1044 (1964).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Knyazev.

Additional information

Original Russian Text © Yu.V. Knyazev, A.V. Lukoyanov, Yu.I. Kuz’min, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 9, pp. 1665–1669.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, Y.V., Lukoyanov, A.V. & Kuz’min, Y.I. Electronic structure and optical properties of the Pr5Ge3 compound. Phys. Solid State 57, 1705–1709 (2015). https://doi.org/10.1134/S1063783415090164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415090164

Keywords

Navigation