Skip to main content
Log in

Effect of dynamic diffusion of air, nitrogen, and helium gaseous media on the microhardness of ionic crystals with juvenile surfaces

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The load dependences of the microhardness of surface layers of NaCl and LiF ionic single crystals with juvenile surfaces and surfaces exposed to air for a long time measured in the air, nitrogen, and helium gaseous media have been investigated. It has been found that there is a change in the sign of the derivative of the microhardness as a function of the load for LiF crystals indented in helium and after their aging in air, as well as a weaker effect of the nitrogen and air gaseous media on the studied dependences as compared to NaCl crystals. It has also been found that, after the aging of the surface of NaCl crystals in air, there is a change in the sign of the derivative of the microhardness in the nitrogen and air gaseous media, as well as a pronounced change in the microhardness as a function of the time of aging the samples in air as compared to the weaker effect of the gaseous medium for LiF crystals. The obtained data have been analyzed in terms of the phenomenon of dislocation-dynamic diffusion of particles from the external medium into crystalline materials during their plastic deformation along the nucleating and moving dislocations. It has been shown that this phenomenon affects the microhardness through changes in the intensity of dislocation multiplication upon the formation of indentation rosettes in different gaseous media. The performed investigation of the microhardness of the juvenile surface of NaCl and LiF crystals in different gaseous media has revealed for the first time a different character of dislocation-dynamic diffusion of these media in a “pure” form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. G. Saralidze, M. V. Galustashvili, and D. G. Driyaev, Phys. Solid State 41 (11), 1834 (1999).

    Article  ADS  Google Scholar 

  2. A. V. Chivanov, L. G. Karyev, and G. V. Novikov, Vestn. Tambov. Gos. Univ. 18 (4), 1789 (2013).

    Google Scholar 

  3. V. A. Fedorov and G. V. Novikov, Vestn. Tambov. Gos. Univ. 18 (4), 1784 (2013).

    Google Scholar 

  4. O. V. Klyavin, Physics of Crystal Plasticity at LiquidHelium Temperatures (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  5. O. V. Klyavin, N. P. Likhodedov, and A. N. Orlov, Surf. Sci. 33, 259 (1990).

    Google Scholar 

  6. O. V. Klyavin, Sov. Phys. Solid State 38 (4), 649 (1986).

    ADS  Google Scholar 

  7. A. B. Zuev, M. G. Tokmashev, and M. S. Sidorov, Fiz. Khim. Obrab. Mater., No. 2, 32 (1971).

    Google Scholar 

  8. A. B. Zuev, Poverkhnost, No. 1, 56 (1983).

    Google Scholar 

  9. A. A. Vorob’ev, Mechanical and Thermal Properties of Alkali-Halide Single Crystals (Vysshaya Shkola, Moscow, 1968) [in Russian].

    Google Scholar 

  10. G. I. Shvets, O. V. Klyavin, and M. I. Abaev, Poverkhnost, No. 7, 91 (1982).

    Google Scholar 

  11. O. V. Klyavin and G. I. Shvets, Sov. Phys. Solid State 24 (9), 1520 (1982).

    Google Scholar 

  12. O. V. Klyavin and G. I. Shvets, Sov. Phys. Solid State 30 (4), 598 (1988).

    Google Scholar 

  13. E. V. Kalashnikov, O. V. Klyavin, and I. G. Titarenko, Tech. Phys. 58 (4), 546 (2013).

    Article  Google Scholar 

  14. A. Ya. Kupryazhkin and A. Yu. Kurkin, Phys. Solid State 35 (11), 1481 (1993).

    ADS  Google Scholar 

  15. O. V. Klyavin, B. A. Mamyrin, L. V. Khabarin, Yu.M. Chernov, and V. S. Yudenich, Sov. Phys. Solid State 24 (7), 1143 (1982).

    Google Scholar 

  16. Yu. A. Akulov, I. N. Zimkin, O. V. Klyavin, B. A. Mamyrin, D. L. Rutter, L. V. Khabarin, Yu.M. Chernov, and V. S. Yudenich, Sov. Phys. Solid State 30 (5), 890 (1990).

    Google Scholar 

  17. O. V. Klyavin, Yu. M. Chernov, I. N. Pravdina, and I. I. Rykova, Sov. Phys. Solid State 20 (10), 1787 (1978).

    Google Scholar 

  18. O. V. Klyavin, B. A. Mamyrin, L. V. Khabarin, and Yu.M. Chernov, Phys. Solid State 47 (5), 863 (2005).

    Article  ADS  Google Scholar 

  19. O. V. Klyavin, V. I. Nikolaev, B. I. Smirnov, L. V. Khabarin, Yu. M. Chernov, and V. V. Shpeizman, Phys. Solid State 50 (8), 1458 (2008).

    Article  ADS  Google Scholar 

  20. O. V. Klyavin, V. I. Nikolaev, O. F. Pozdnyakov, B. I. Smirnov, Yu. M. Chernov, and V. V. Shpeizman, Bull. Russ. Acad. Sci.: Phys. 73 (10), 1416 (2009).

    Article  Google Scholar 

  21. O. V. Klyavin, V. I. Nikolaev, O. F. Pozdnyakov, B. I. Smirnov, Yu. M. Chernov, and V. V. Shpeizman, Phys. Solid State 52 (12), 2496 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Klyavin or V. V. Shpeizman.

Additional information

Original Russian Text © O.V. Klyavin, V.Yu. Fedorov, Yu.M. Chernov, V.V. Shpeizman, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 9, pp. 1755–1760.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyavin, O.V., Fedorov, V.Y., Chernov, Y.M. et al. Effect of dynamic diffusion of air, nitrogen, and helium gaseous media on the microhardness of ionic crystals with juvenile surfaces. Phys. Solid State 57, 1800–1806 (2015). https://doi.org/10.1134/S1063783415090152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415090152

Keywords

Navigation