Skip to main content
Log in

Investigation of the properties of BiFeO3/intermediate-layer structures fabricated by magnetron sputtering

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The properties of BiFeO3/intermediate layer/substrate structures fabricated by radio-frequency magnetron sputtering at low temperatures (450°C) and by deposition on substrates and intermediate layers between the substrate and the BiFeO3 film have been investigated. In the structures, glass substrates or commercial Pt/Ti/SiO2/Si(001) substrates have been used, and intermediate layers have been prepared from L10 FePt or Pt films. Intermediate layers of Pt and L10 FePt have the (111) and (001) textures, respectively, induced by rapid thermal annealing. It has been revealed that the deposition on the commercial substrates leads to the formation of BiFeO3 isotropic films that have a large surface roughness and consist of grains ∼200 nm in size with the BiFeO3 perovskite structure. In the case of the deposition of a BiFeO3 film on a Pt(111) intermediate layer, the BiFeO3 phase is suppressed. The deposition on an intermediate layer of the L10 FePt film with the (001) texture results in the formation of a single-phase BiFeO3 film with the (001) texture and the perovskite structure, which (as compared to the BiFeO3 films grown on the commercial substrate) has a less pronounced roughness, smaller grain sizes, and significantly better ferroelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Catalan and J. F. Scott, Adv. Mater. (Weinheim) 21, 2463 (2009).

    Article  Google Scholar 

  2. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science (Washington) 299, 1719 (2003).

    Article  ADS  Google Scholar 

  3. C. A. F. Vaz, J. Phys.: Condens. Matter 24, 333201 (2012).

    Google Scholar 

  4. D. Chiba and T. Ono, J. Phys. D: Appl. Phys. 46, 213001 (2013).

    Article  ADS  Google Scholar 

  5. Xin Huang and Shuai Dong, Mod. Phys. Lett. B 28 (23), 1430010 (2014).

    Article  Google Scholar 

  6. J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8, 1073 (1970).

    Article  ADS  Google Scholar 

  7. H. W. Chang, F. T. Yuan, C. W. Shih, C. R. Wang, W. C. Chang, and S. U. Jen, J. Appl. Phys. 111, 07D918 (2012).

  8. J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261 (2004).

    Article  ADS  Google Scholar 

  9. H. W. Jang, S. H. Beak, D. Ortiz, C. M. Folkman, C. B. Eom, Y. H. Chu, P. Shafer, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, Appl. Phys. Lett. 92, 062910 (2008).

    Article  ADS  Google Scholar 

  10. J. Wu and J. Wang, J. Appl. Phys. 106, 104111 (2009).

    Article  ADS  Google Scholar 

  11. S. Ryu, J. Y. Son, Y. H. Shih, H. M. Jang, and J. F. Scott, Appl. Phys. Lett. 95, 242902 (2009).

    Article  ADS  Google Scholar 

  12. J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser, and R. Ramesh, Appl. Phys. Lett. 85, 2574 (2004).

    Article  ADS  Google Scholar 

  13. J. Wu and J. Wang, J. Appl. Phys. 107, 034103 (2010).

    Article  ADS  Google Scholar 

  14. C. M. Folkman, S. H. Baek, H. W. Jang, C. B. Eom, C.T. Nelson, X. Q. Pan, Y. L. Li, L. Q. Chen, A. Kumar, V. Gopalan, and S. K. Streiffer, Appl. Phys. Lett. 94, 251911 (2009).

    Article  ADS  Google Scholar 

  15. H. Naganuma, M. Oogane, and Y. Ando, J. Appl. Phys. 109, 07D736 (2011).

  16. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  17. A. S. Kamzin, Fulin Wei, V. R. Ganeev, A. A. Valiullin, and L. D. Zaripova, Phys. Solid State 55 (9), 1855 (2013).

    Article  ADS  Google Scholar 

  18. A. S. Kamzin, F. L. Wei, V. Ganeev, and L. D. Zaripova, Phys. Solid State 54 (6), 1166 (2012).

    Article  ADS  Google Scholar 

  19. A. S. Kamzin, F. L. Wei, B. Ma, V. Ganeev, and L. D. Zaripova, Tech. Phys. Lett. 38 (2), 181 (2012).

    Article  ADS  Google Scholar 

  20. J. K. Mei, F. T. Yuan, W. M. Liao, Y. D. Yao, H. M. Lin, H. Y. Lee, and J. H. Hsu, J. Appl. Phys. 109, 07A737 (2011).

  21. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phase (ASM, Metals Park, Ohio, 2000).

    Google Scholar 

  22. V. Karanasos, I. Panagiotopoulos, D. Niarchos, H. Okumura, and G. C. Hadjipanayis, Appl. Phys. Lett. 79, 1255 (2001).

    Article  ADS  Google Scholar 

  23. C. Blaauw and F. van der Woude, J. Phys. C: Solid State Phys. 6, 1422 (1973).

    Article  ADS  Google Scholar 

  24. Samar Layek, Santanu Saha, and H. C. Verma, AIP Adv. 3, 032140 (2013).

    Article  ADS  Google Scholar 

  25. A. Sobolev, I. Presniakov, V. Rusakov, A. Belik, M. Matsnev, D. Gorchakov, and I. Glazkova, AIP Conf. Proc. 1622, 104 (2014).

    Article  ADS  Google Scholar 

  26. Samar Layek and H. C. Verma, Adv. Mater. Lett. 3 (6), 533 (2012).

    Google Scholar 

  27. N. A. Lomanova, V. G. Semenov, V. V. Panchuk, and V. V. Gusarov, J. Alloys Compd. 528, 103 (2012).

    Article  Google Scholar 

  28. Y. R. Dai, Qingyu Xu, Xiaohong Zheng, Shijun Yuan, Ya Zhai, and Mingxiang Xu, Physica B (Amsterdam) 407, 560 (2012).

    Article  ADS  Google Scholar 

  29. Shahzad Hussain, S. K. Hasanain, G. Hassnain Jaffari, Naveed Zafar Ali, M. Siddique, and S. Ismat Shah, J. Alloys Compd. 622, 8 (2015).

    Article  Google Scholar 

  30. Ren Zheng Xiao, Vasiliy O. Pelenovich, and Dejun Fu, Appl. Phys. Lett. 103, 012901 (2013).

    Article  ADS  Google Scholar 

  31. Kiyotaka Tanaka, Yuya Fujita, Soichiro Okamura, and Yutaka Yoshida, Jpn. J. Appl. Phys. 53, 09PA15 (2014).

  32. Ren Zheng Xiao, Vasiliy O. Pelenovich, and Dejun Fu, Mater. Lett. 100, 26 (2013).

    Article  Google Scholar 

  33. F. M. Pereira, A. C. Pereira, A. S. Silva, D. S. Schmool, and C. Freire, J. Appl. Phys. 109, 114319 (2011).

    Article  ADS  Google Scholar 

  34. M. J. Clauser, Phys. Rev. B: Solid State 3, 583 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamzin.

Additional information

Original Russian Text © A.S. Kamzin, L.S. Kamzina, H.W. Chang, Y.C. Yu, S.Y. Tu, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 9, pp. 1720–1727.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzin, A.S., Kamzina, L.S., Chang, H.W. et al. Investigation of the properties of BiFeO3/intermediate-layer structures fabricated by magnetron sputtering. Phys. Solid State 57, 1764–1771 (2015). https://doi.org/10.1134/S1063783415090139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415090139

Keywords

Navigation