Skip to main content
Log in

Nucleation of dislocations in aluminum alloys with copper

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of copper impurities on the nucleation of dislocations in aluminum has been investigated using the method for determining the average lifetime of the metastable state. The primary data have been obtained using the molecular dynamics method. The obtained dependences of the dislocation nucleation rate on the shear stress in pure aluminum and aluminum solid solutions with copper have been plotted in the Arrhenius form. It has been found that, with an increase in the copper concentration, the activation parameters for these dependences decrease. It has been shown that an increase in the temperature leads to an increase in the sensitivity of the dislocation nucleation rate to stresses in aluminum solid solutions with 0.1–3.0 at % Cu, in contrast to pure aluminum in which the sensitivity is almost independent of the temperature. The dependences of the dislocation nucleation rate on the copper concentration and temperature over the entire range of stresses have been discussed based on the obtained approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dew-Hughes and W. D. Robertson, Acta Metall. 8, 156 (1960).

    Article  Google Scholar 

  2. E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 112, 073504 (2012).

    Article  ADS  Google Scholar 

  3. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

    Google Scholar 

  4. V. I. Al’shits and V. L. Indenbom, Sov. Phys.—Usp. 18 (1), 1 (1975).

    Article  ADS  Google Scholar 

  5. T. Suzuki, H. Yosinaga, and S. Takeuti, Dislocation Dynamics and Plasticity (Syokabo, Tokyo, 1986; Mir, Moscow, 1989).

    Google Scholar 

  6. C. A. Schuh, J. K. Mason, and A. C. Lund, Nat. Mater. 4, 617 (2005).

    Article  ADS  Google Scholar 

  7. P. S. Wo, L. Zuo, and A. H. W. Ngan, J. Mater. Res. 20, 489 (2005).

    Article  ADS  Google Scholar 

  8. C. Zhu, Z. P. Lu, and T. G. Nieh, Acta Mater. 61, 2993 (2013).

    Article  Google Scholar 

  9. M. Yu. Gutkin and I. A. Ovid’ko, Appl. Phys. Lett. 88, 211901 (2006).

    Article  ADS  Google Scholar 

  10. M. Yu. Gutkin and I. A. Ovid’ko, Phys. Solid State 50 (4), 655 (2008).

    Article  ADS  Google Scholar 

  11. M. Yu. Gutkin, T. Ishizaki, S. Kuramoto, and I. A. Ovidko, Acta Mater. 54, 2489 (2006).

    Article  Google Scholar 

  12. M. Yu. Gutkin and I. A. Ovidko, Acta Mater. 56, 1642 (2008).

    Article  Google Scholar 

  13. J. Cui, Y. Hao, S. Li, M. Sui, D. Li, and R. Yang, Phys. Rev. Lett. 102, 045503 (2009).

    Article  ADS  Google Scholar 

  14. S. V. Bobylev and I. A. Ovid’ko, Phys. Solid State 50 (4), 642 (2008).

    Article  ADS  Google Scholar 

  15. M. Yu. Gutkin, K. N. Mikaelyan, and I. A. Ovid’ko, Phys. Solid State 43 (1), 42 (2001).

    Article  ADS  Google Scholar 

  16. M. Yu. Gutkin and A. M. Smirnov, Phys. Solid State 56 (4), 731 (2014).

    Article  ADS  Google Scholar 

  17. M. Yu. Gutkin, A. L. Kolesnikova, S. A. Krasnitskii, and A. E. Romanov, Phys. Solid State 56 (4), 723 (2014).

    Article  ADS  Google Scholar 

  18. G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  Google Scholar 

  19. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Phys. Rev. Lett. 100, 025502 (2008).

    Article  ADS  Google Scholar 

  20. M. G. McPhie, S. Berbenni, and M. Cherkaoui, Comput. Mater. Sci. 62, 169 (2012).

    Article  Google Scholar 

  21. G. E. Norman and A. A. Yanilkin, Phys. Solid State 53 (8), 1614 (2011).

    Article  Google Scholar 

  22. S. Ryu, K. Kang, and W. Cai, Proc. Natl. Acad. Sci. USA 108, 5174 (2011).

    Article  ADS  Google Scholar 

  23. Z. Li, R. C. Picu, R. Muralidhar, and P. Oldiges, J. Appl. Phys. 112, 034315 (2012).

    Article  ADS  Google Scholar 

  24. R. K. Rajgarhia, D. E. Spearot, and A. Saxena, Modell. Simul. Mater. Sci. Eng. 17, 055001 (2009).

    Article  ADS  Google Scholar 

  25. N. Amigo, G. Gutierrez, and M. Ignat, Comput. Mater. Sci. 87, 76 (2014).

    Article  Google Scholar 

  26. F. Apostol and Y. Mishin, Phys. Rev. B: Condens. Matter 83, 054116 (2011).

    Article  ADS  Google Scholar 

  27. R. Fletcher and C. M. Reeves, Comput. J. 7 (2), 149 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  28. S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  MATH  Google Scholar 

  29. G. E. Norman and V. V. Stegailov, Mol. Simul. 30, 397 (2004).

    Article  MATH  Google Scholar 

  30. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1990).

    Google Scholar 

  31. S. G. Psakhie, K. P. Zolnikov, and D. S. Kryzhevich, Phys. Lett. A 367, 250 (2007).

    Article  ADS  Google Scholar 

  32. S. Aubry, K. Kang, S. Ryu, and W. Cai, Scr. Mater. 64, 1043 (2011).

    Article  Google Scholar 

  33. X.-Y. Liu, X. Wei, S. M. Foiles, and J. B. Adams, Appl. Phys. Lett. 72, 1578 (1998).

    Article  ADS  Google Scholar 

  34. M. Uranagase and R. Matsumoto, Phys. Rev. B: Condens. Matter 89, 224103 (2014).

    Article  ADS  Google Scholar 

  35. V. V. Voevodin, S. A. Zhumatiy, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, Vad. V. Voevodin, Open Syst. J. 7, 36 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bryukhanov.

Additional information

Original Russian Text © I.A. Bryukhanov, V.L. Kovalev, A.V. Larin, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 9, pp. 1761–1771.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryukhanov, I.A., Kovalev, V.L. & Larin, A.V. Nucleation of dislocations in aluminum alloys with copper. Phys. Solid State 57, 1807–1817 (2015). https://doi.org/10.1134/S106378341509005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341509005X

Keywords

Navigation