Skip to main content
Log in

Temperature dependence of photoluminescence of semiconductor quantum dots upon indirect excitation in a SiO2 dielectric matrix

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The processes of excitation and relaxation of confined excitons in semiconductor quantum dots upon indirect high-energy excitation have been considered. The temperature behavior of photoluminescence of quantum dots in a SiO2 dielectric matrix has been described using a model accounting for the process of population of quantum-dot triplet states upon excitation transfer through mobile excitons of the matrix. Analytical expressions that take into account the two-stage and three-stage schemes of relaxation transitions have been obtained. The applicability of these expressions for analyzing fluorescence properties of semiconductor quantum dots has been demonstrated using the example of silicon and carbon nanoparticles in the thin-film SiO2 matrix. It has been shown that the complex character of the temperature dependences of the photoluminescence upon indirect excitation can be an indication of a multistage relaxation of excited states of the matrix and quantum dots. The model concepts developed in this study allow one to predict the form of temperature dependences of the photoluminescence for different schemes of indirect excitation of quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Martinez-Duart, R. Martin-Palma, and F. Agullo-Rueda, Nanotechnology for Microelectronics and Optoelectronics (Elsevier, Amsterdam, 2006; Tekhnosfera, Moscow, 2007).

    Google Scholar 

  2. J. Zn. Zhang, Optical Properties and Spectroscopy of Nanomaterials (World Scientific, Singapore, 2009).

    Book  Google Scholar 

  3. N. Gerasimenko and Yu. Parkhomenko, Silicon-AMaterial for Nanoelectronics (Tekhnosfera, Moscow, 2007) [in Russian].

    Google Scholar 

  4. A. F. Kravchenko and V. N. Ovsyuk, Electronic Processes in Low-Dimensional Solid-State Systems (Novosibirsk University, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  5. A. F. Zatsepin, E. A Buntov, V. S. Kortov, D. I. Tetelbaum, A. N. Mikhaylov, and A. I. Belov, J. Phys.: Condens. Matter 24, 045301 (2012).

    ADS  Google Scholar 

  6. A. F. Zatsepin and E. A. Buntov, in Silicon-Based Nanomaterials (Springer-Verlag, New York, 2013), Chap. 5, p. 89.

    Book  Google Scholar 

  7. Zh. Pan, A. Ueda, H. Xu, S. K. Hark, S. H. Morgan, and R. Mu, J. Nanophotonics 12, 063508 (2012).

    Article  Google Scholar 

  8. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  9. A. N. Reznitsky, A. A. Klochikhin, and S. A. Permogorov, Phys. Solid State 54(1), 123 (2012).

    Article  ADS  Google Scholar 

  10. M. N. Nordin, J. Li, S. K. Clowes, and R. J. Curry, Nanotechnology 23, 275701 (2012).

    Article  ADS  Google Scholar 

  11. D. Yu. Biryukov and A. F. Zatsepin, Phys. Solid State 56(3), 635 (2014).

    Article  ADS  Google Scholar 

  12. J. Wang, M. Righini, A. Gnoli, S. Foss, T. Finstad, U. Serincan, and R. Turan, Solid State Commun. 147, 461 (2008).

    Article  ADS  Google Scholar 

  13. S. N. Nagornykh, V. I. Pavlenkov, A. N. Mikhailov, A. I. Belov, L. V. Krasil’nikova, D. I. Kryzhkov, and D. I. Tetel’baum, Tech. Phys. 57(12), 1672 (2012).

    Article  Google Scholar 

  14. M. Kapoor, V. A. Singh, and G. K. Johri, Phys. Rev. B: Condens. Matter 61, 1941 (2000).

    Article  ADS  Google Scholar 

  15. R. A. Street, Adv. Phys. 25, 397 (1976).

    Article  ADS  Google Scholar 

  16. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 1979).

    Google Scholar 

  17. Yu. D. Glinka, Sh-H. Lin, and Yit-T. Chen, Phys. Rev. B: Condens. Matter 66, 035404 (2002).

    Article  ADS  Google Scholar 

  18. Yu. D. Glinka, Sh-H. Lin, L-P. Hwang, Yit-T. Chen, and N. H. Tolk, Phys. Rev. B: Condens. Matter 64, 085421 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Zatsepin.

Additional information

Original Russian Text © A.F. Zatsepin, D.Yu. Biryukov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 8, pp. 1570–1575.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zatsepin, A.F., Biryukov, D.Y. Temperature dependence of photoluminescence of semiconductor quantum dots upon indirect excitation in a SiO2 dielectric matrix. Phys. Solid State 57, 1601–1606 (2015). https://doi.org/10.1134/S1063783415080363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415080363

Keywords

Navigation