Skip to main content
Log in

Switching and memory effects in composite films of semiconducting polymers with particles of graphene and graphene oxide

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effects of switching were investigated in composite films based on multifunctional polymers. i.e., derivatives of carbazole (PVK) and fluorene (PFD), as well as based on particles of graphene (Gr) and graphene oxide (GO). The concentration of Gr and GO particles in the PVK(PFD) matrix was varied in the range of 2–3 wt %, which corresponded to the percolation threshold in these systems. The atomic composition of the composite films PVK: GO was examined using X-ray photoelectron spectroscopy. It was found that the effect of switching in structures of the form Al/PVK(PFD): GO(Gr)/ITO/PET manifests itself in a sharp change of the electrical resistance of the composite film from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ∼0.1–0.3 V (E ∼ 3–5 × 104 V/cm), which is below the threshold switching voltages for similar composites. The mechanism of resistance switching, which is associated with the processes of capture and accumulation of charge carriers by Gr (GO) particles introduced into the matrices of the high-molecular-weight (PVK) and relatively low-molecular-weight (PFD) polymers, was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Skotheim and J. R. Reynolds, Handbook of Conducting Polymers, 3rd ed. (CRC Press, New York, 2007), p. 620.

    Google Scholar 

  2. Y. Yang, J. Ouyang, L. Ma, R. J. Tseng, and C. W. Chu, Adv. Funct. Mater. 16, 1001 (2006).

    Article  Google Scholar 

  3. A. N. Aleshin and E. L. Alexandrova, Phys. Solid State 50(10), 1978 (2008).

    Article  ADS  Google Scholar 

  4. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Grigorieva, I. V. Dubonos, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  6. J. Huang, D. R. Hines, B. J. Jung, M. S. Bronsgeest, A. Tunnell, V. Ballarotto, H. E. Katz, M. S. Fuhrer, E. D. Williams, and J. Cumings, Org. Electron. 12, 1471 (2011).

    Article  Google Scholar 

  7. A. N. Aleshin, I. P. Shcherbakov, A. S. Komolov, V. N. Petrov, and I. N. Trapeznikova, Org. Electron. 16, 186 (2015).

    Article  Google Scholar 

  8. W.-P. Lin, S.-J. Liu, T. Gong, Q. Zhao, and W. Huang, Adv. Mater. (Weinheim) 26, 570 (2014).

    Article  Google Scholar 

  9. H. He, J. Klinowski, M. Forster, and A. Lerf, Chem. Phys. Lett. 287, 53 (1998).

    Article  ADS  Google Scholar 

  10. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Nat. Chem. 2, 1015 (2010).

    Article  Google Scholar 

  11. Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, Appl. Phys. Lett. 94, 111909 (2009).

    Article  ADS  Google Scholar 

  12. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, Adv. Mater. (Weinheim) 22, 505 (2009).

    Article  Google Scholar 

  13. A. S. Komolov, K. Schaumburg, P. J. Møller, and V. V. Monakhov, Appl. Surf. Sci. 142, 591 (1999).

    Article  ADS  Google Scholar 

  14. Y. L. F. Musico, C. M. Santos, M. L. P. Dalidab, and D. F. Rodrigues, J. Mater. Chem. A 1, 3789 (2013).

    Article  Google Scholar 

  15. A. Opitz, J. Frisch, R. Schlesinger, A. Wilke, and N. Koch, J. Electron Spectrosc. Relat. Phenom. 190, 12 (2013).

    Article  Google Scholar 

  16. E. H. Hwang, S. Adam, and S. D. Sarma, Phys. Rev. Lett. 98, 186806 (2007).

    Article  ADS  Google Scholar 

  17. T. Harada, I. Ohkubo, K. Tsubouchi, H. Kumigashira, T. Ohnishi, M. Lippmaa, Y. Matsumoto, H. Koinuma, and M. Oshima, Appl. Phys. Lett. 92, 222113 (2008).

    Article  ADS  Google Scholar 

  18. D. Joung, A. Chunder, L. Zhai, and S. I. Khondaker, Appl. Phys Lett. 97, 093105 (2010).

    Article  ADS  Google Scholar 

  19. G. Khurana, R. Misra, and R. S. Katiyar, J. Appl. Phys. 114, 124508 (2013).

    Article  ADS  Google Scholar 

  20. D. I. Son, T. W. Kim, J. H. Shim, J. H. Jung, D. U. Lee, J. M. Lee, W. Park, and W. K. Choi, Nano Lett. 10, 2441 (2010).

    Article  ADS  Google Scholar 

  21. A. Younis, D. Chu, and S. Li, J. Phys. D: Appl. Phys. 45, 355101 (2012).

    Article  ADS  Google Scholar 

  22. S. K. Hong, E. J. Kim, S. O. Kim, and B. J. Cho, J. Appl. Phys. 110, 044506 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Aleshin.

Additional information

Original Russian Text © P.S. Krylov, A.S. Berestennikov, A.N. Aleshin, A.S. Komolov, I.P. Shcherbakov, V.N. Petrov, I.N. Trapeznikova, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 8, pp. 1639–1644.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, P.S., Berestennikov, A.S., Aleshin, A.N. et al. Switching and memory effects in composite films of semiconducting polymers with particles of graphene and graphene oxide. Phys. Solid State 57, 1678–1684 (2015). https://doi.org/10.1134/S1063783415080168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415080168

Keywords

Navigation