Skip to main content
Log in

A study of the oxygen effect on the properties of magnetic anisotropy of Co nanowires on the Cu(210) surface: An ab initio approach

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The magnetic properties of Co nanowires on pure and oxygen-reconstructed Cu(210) surfaces have been investigated using ab initio density functional theory methods. The performed calculations have demonstrated that the studied nanowires on a pure Cu(210) surface have a high magnetic moment and a low magnetic anisotropy energy. However, the analysis of the influence of the oxygen reconstruction of the copper surface has revealed that Co nanowires on the oxidized (2 × 1)O-Cu(210) surface are characterized by a significant increase in the magnetic anisotropy energy due to the change in the projection of the orbital angular momentum of Co atoms after the oxygen adsorption on the surface. In this case, the oxygen reconstruction of the copper surface leads to a change of the magnetization easy axis direction, which is consistent with the experimental data on the self-organizing growth of Co nanowires on the nitrided Cu(210) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Eigler and E. K. Schweizer, Nature (London) 344, 524 (1990).

    Article  ADS  Google Scholar 

  2. H. J. Elmers, J. Hauschild, H. Hoche, U. Gradmann, H. Bethge, D. Heuer, and U. Köhler, Phys. Rev. Lett. 73, 898 (1994).

    Article  ADS  Google Scholar 

  3. J. Shen, R. Skomski, M. Klaua, H. Jenniches, S. Sundar Manoharan, and J. Kirschner, Phys. Rev. B: Condens. Matter 56, 2340 (1997).

    Article  ADS  Google Scholar 

  4. J. Hauschild, H. J. Elmers, and U. Gradmann, Phys. Rev. B: Condens. Matter 57, R677 (1998).

    Article  ADS  Google Scholar 

  5. M. Pratzer, H. J. Elmers, M. Bode, O. Pietzsch, A. Kubetzka, and R. Wiesendanger, Phys. Rev. Lett. 87, 127201 (2001).

    Article  ADS  Google Scholar 

  6. P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W. Ebezhazdt, K. Kern, and C. Carbone, Nature (London) 416, 301 (2002).

    Article  ADS  MATH  Google Scholar 

  7. R. Cheng, E. Ayieta, and Ya. B. Losovyij, J. Vac. Sci. Technol., A 26(4), 673 (2008).

    Article  MATH  Google Scholar 

  8. P. Gambardella, M. Blanc, L. Burgi, K. Kuhnke, and K. Kern, Surf. Sci. 449, 93 (2000).

    Article  ADS  Google Scholar 

  9. P. Gambardella, M. Blanc, K. Kuhnke, and K. Kern, Phys. Rev. B: Condens. Matter 61, 2254 (2000).

    Article  ADS  Google Scholar 

  10. W. C. Lin, H.-Y. Chang, Y.-Y. Lin, and Y.-C. Hu, J. Appl. Phys. 107, 014301 (2010).

    Article  ADS  Google Scholar 

  11. S. Shivaki, H. Fujisawa, M. Nanton, and M. Kawai, Phys. Rev. Lett. 92(9), 096102 (2004).

    Article  ADS  Google Scholar 

  12. S. Shivaki, H. Fujisawa, T. Nakamuro, N. Muro, M. Nantoh, and M. Kawai, Phys. Rev. B: Condens. Matter 78, 115428 (2008).

    Article  ADS  Google Scholar 

  13. J. Honolka, T. Y. Lee, K. Kuhnke, D. Repetto, V. Sessi, P. Wahl, A. Buchsbaum. P. Varga, S. Gardonio, C. Carbone, S. R. Krishnakumar, P. Gambardella, M. Komelj. R. Singer, M. Fähnle, et al., Phys. Rev. B: Condens. Matter 79, 104430 (2009).

    Article  ADS  Google Scholar 

  14. M. Komelj, P. Steiauf, and M. Fahnle, Phys. Rev. B: Condens. Matter 73, 134428 (2006).

    Article  ADS  Google Scholar 

  15. D. Spisak and J. Hafner, Comput. Mater. Sci. 27, 138 (2003).

    Article  Google Scholar 

  16. E. Hahn, E. Kampshoff, A. Fricke, J.-P. Butcher, and K. Kern, Surf. Sci. 319, 277 (1994).

    Article  ADS  Google Scholar 

  17. L. Yan, M. Przybylski, Y. Lu, W. H. Wang, J. Barthel, and J. Kirschner, Appl. Phys. Lett. 86, 102503 (2005).

    Article  ADS  Google Scholar 

  18. O. Stepanyuk, N. Negulyaev, P. Ignatiev, M. Przybylski, W. Hergert, A. Saletsky, and J. Kirschner, Phys. Rev. B: Condens. Matter 79, 155410 (2009).

    Article  ADS  Google Scholar 

  19. W. Fan and X.-G. Gong, Surf. Rev. Lett. 15(5), 567 (2008).

    Article  Google Scholar 

  20. H. Xu, X. Gao, Y. Y. Sun, and A. T. S. Wee, Jpn. J. Appl. Phys. 45, 2106 (2006).

    Article  ADS  Google Scholar 

  21. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

    Article  ADS  Google Scholar 

  22. P. E. Blöchl, Phys. Rev. B: Condens. Matter 50, 17953 (1994).

    Article  ADS  Google Scholar 

  23. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13, 5188 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    Article  ADS  Google Scholar 

  25. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  ADS  Google Scholar 

  26. H. J. G. Draaisma and W. J. M. de Jonge, J. Appl. Phys. 64(7), 3610 (1988); F. Munoz, J. Mejia-Lopez, T. Perez-Acle, and A. H. Romero, ACS Nano 4 (5), 2883 (2010).

    Article  ADS  Google Scholar 

  27. X.-D. Ma, D. I. Bazhanov, O. Fruchart, F. Yildiz, T. Yokoyama, M. Przybylski, V. S. Stepanyuk, W. Hergert, and J. Kirschner, Phys. Rev. Lett. 102, 205503 (2009).

    Article  ADS  Google Scholar 

  28. A. Soon, L. Wong, M. Lee, and M. Todorova, Surf. Sci. 601, 4775 (2007).

    Article  ADS  Google Scholar 

  29. A. Soon, L. Wong, B. Delley, and C. Stampfl, Phys. Rev. B: Condens. Matter 77, 125423 (2008).

    Article  ADS  Google Scholar 

  30. Y. P. Guo, K. C. Tan, H. Q. Wang, C. H. A. Huan, and A. T. S. Wee, Phys. Rev. B: Condens. Matter 66, 165410 (2002).

    Article  ADS  Google Scholar 

  31. T. S. Dasa, P. A. Ignatiev, and V. S. Stepanyuk, Phys. Rev. B: Condens. Matter 85, 205447 (2012).

    Article  ADS  Google Scholar 

  32. T. Nakagawa, Y. Takagi, Y. Matsumoto, and T. Yokoyama, Jpn. J. Appl. Phys. 47(4), 2132 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Korobova.

Additional information

Original Russian Text © J.G. Korobova, D.I. Bazhanov, I.A. Kamynina, K.K. Abgaryan, A.S. Ilyushin, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 7, pp. 1343–1348.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobova, J.G., Bazhanov, D.I., Kamynina, I.A. et al. A study of the oxygen effect on the properties of magnetic anisotropy of Co nanowires on the Cu(210) surface: An ab initio approach. Phys. Solid State 57, 1366–1371 (2015). https://doi.org/10.1134/S1063783415070185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415070185

Keywords

Navigation