Skip to main content
Log in

Soliton microdynamics of multiphase thermal conductivity of fuel materials of the uranium dioxide type with the generation of new-type surface vibrations

  • Lattice Dynamics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The microdynamics of large-amplitude nonlinear atomic vibrations in crystals of the UO2, PuO2, and ThO2 types with the fluorite structure has been studied using the neutron spectrometry and computer simulation methods. Investigations performed on the DIN-2PI neutron spectrometer have revealed a fine structure of the multi-resonance spectral density of vibrations in UO2. The temperature dependence of the coefficient of thermal conductivity of UO2 with two maxima in the range from 500 to 3000 K and the multi-resonance density of vibrations has been interpreted according to the results of the computer simulation demonstrating the generation of single solitons and soliton beams at low and high temperatures. It has been shown that the maximum of the coefficient of thermal conductivity at a temperature of 500 K is determined by the energy transfer by solitons. A decrease in the coefficient of thermal conductivity in the range from 500 to 2000 K is determined by soliton-soliton scattering. An increase in the coefficient of thermal conductivity in the range from 2000 to 3000 K is determined by the generation of soliton beams with the formation of dynamic pores. It has been found that, in crystals of the UO2, PuO2, and ThO2 types, there are resonances of new-type surface vibrations between the dispersion branches of optical phonons. An additional resonance between the low-frequency optical branch and the acoustic branch has been revealed at finite temperatures. This resonance has been interpreted as a nonlinear local mode, in the framework of the quantum theory, possible, a biphonon. It has also been found that, with an increase in the excitation energy, there are soliton branches between this resonance and the acoustic branch in UO2, which in the phase plane cross the band of a nonlinear local mode with an increasing rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Kurina, V. V. Popov, and V. N. Kharitonov, At. Energy. 101, 802 (2006).

    Article  Google Scholar 

  2. G. Dolling, R. A. Cowley, and A. D. B. Woods, Can. J. Phys. 43, 1397 (1965).

    Article  ADS  Google Scholar 

  3. N. J. Dudney, R. L. Goble, and H. I. Tuller, J. Am. Ceram. Soc. 64, 627 (1981).

    Article  Google Scholar 

  4. R. Brandt and G. Neuer, J. Non-Equilib. Thermodyn. 1, 3 (1967).

    ADS  Google Scholar 

  5. J. H. Harding and D. G. Martin, J. Nucl. Mater. 166, 223 (1989).

    Article  ADS  Google Scholar 

  6. K. Kurosaki, K. Yamada, M. Uno, S. Yamanaka, K. Yamamoto, and T. Namekawa, J. Nucl. Mater. 294, 160 (2001).

    Article  ADS  Google Scholar 

  7. Q. Yin and S. Y. Savrasov, Phys. Rev. Lett. 100, 225504 (2008).

    Article  ADS  Google Scholar 

  8. V. A. Semenov, Zh. A. Kozlov, V. M. Morozov, A. V. Puchkov, V. V. Savostin, and E. L. Yadrovskii, Preprint FEI-3176 (State Scientific Center of the Russian Federation-Leipunsky Institute of Physics and Power Engineering, Obninsk, 2009).

    Google Scholar 

  9. V. A. Semenov, O. A. Dubovskiy, and A. V. Orlov, Crystallogr. Rep. 56, 1149 (2011).

    Article  ADS  Google Scholar 

  10. O. A. Dubovsky, A. V. Orlov, and V. A. Semenov, Phys. Solid State 53(9), 1963 (2011).

    Article  ADS  Google Scholar 

  11. V. M. Agranovich, Sov. Phys. Solid State 12(2), 430 (1970).

    Google Scholar 

  12. V. M. Agranovich and O. A. Dubovskiy, Optical Properties of Mixed Crystals (North-Holland, Amsterdam, 1988).

    Google Scholar 

  13. V. M. Agranovich, O. A. Dubovskiy, and A. V. Orlov, Phys. Lett. A 119, 83 (1986).

    Article  ADS  Google Scholar 

  14. R. K. Dodd, J. C. Ellbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, London, 1982).

    MATH  Google Scholar 

  15. M. Toda, Theory of Nonlinear Lattices (Springer-Verlag, Berlin, 1981).

    Book  MATH  Google Scholar 

  16. M. E. Manley, M. Yethiraj, H. Sinn, H. M. Volz, A. Alatas, J. C. Lashley, W. L. Hults, G. H. Lander, and J. L. Smith, Phys. Rev. Lett. 96, 125501 (2006).

    Article  ADS  Google Scholar 

  17. A. I. Kolesnikov, M. Prager, J. Tomkinson, I. O. Bashkin, V. Yu. Malyshev, and E. G. Ponyatovskii, J. Phys.: Condens. Matter 3, 5927 (1991).

    ADS  Google Scholar 

  18. O. A. Dubovskyand A. V. Orlov, Phys. Solid State 52(5), 899 (2010).

    Article  ADS  Google Scholar 

  19. M. E. Manley, D. L. Abernathy, N. I. Agladze, and A. J. Sievers, Sci. Rep. 1, 1 (2011).

    Article  Google Scholar 

  20. A. V. Savin and O. V. Gendel’man, Phys. Solid State 43(2), 355 (2001).

    Article  ADS  Google Scholar 

  21. O. A. Dubovsky, V. A. Semenov, and A. V. Orlov, Phys. Solid State 55(2), 396 (2013).

    Article  ADS  Google Scholar 

  22. O. A. Dubovsky and A. V. Orlov, JETP Lett. 87(8), 414 (2008).

    Article  ADS  Google Scholar 

  23. O. A. Dubovsky and A. V. Orlov, JETP Lett. 96(7), 461 (2012).

    Article  ADS  Google Scholar 

  24. O. A. Dubovsky, V. A. Semenov, A. V. Orlov, and V. V. Sudarev, Phys. Solid State 56(9), 1840 (2014).

    Article  ADS  Google Scholar 

  25. A. N. Oraevskii and M. Yu. Sudakov, Sov. Phys. JETP 65(4), 767 (1987).

    Google Scholar 

  26. O. A. Dubovsky and A. V. Orlov, Phys. Solid State 55(8), 1703 (2013).

    Article  ADS  Google Scholar 

  27. E. Fermi, J. R. Pasta, and S. M. Ulam, Collected Works of E. Fermi (University of Chicago Press, Chicago, 1965), Vol. 2, p. 978.

    Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Butterworth-Heinemann, Oxford, 1991).

    Google Scholar 

  29. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer-Verlag, Berlin, 1984).

    Book  Google Scholar 

  30. O. A. Dubovskii, Sov. Phys. Solid State 12(10), 2471 (1970).

    Google Scholar 

  31. O. A. Dubovskii and A. V. Orlov, Phys. Solid State 36(10), 1663 (1994).

    ADS  Google Scholar 

  32. W. Heitler, Quantum Theory of Radiation (Clarendon, Oxford, 1954).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Dubovsky.

Additional information

Original Russian Text © O.A. Dubovsky, V.A. Semenov, A.V. Orlov, V.V. Sudarev, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 7, pp. 1383–1397.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubovsky, O.A., Semenov, V.A., Orlov, A.V. et al. Soliton microdynamics of multiphase thermal conductivity of fuel materials of the uranium dioxide type with the generation of new-type surface vibrations. Phys. Solid State 57, 1407–1423 (2015). https://doi.org/10.1134/S1063783415070100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415070100

Keywords

Navigation