Skip to main content
Log in

Phase transformations in YBa2Cu3O y (y ≤ 6.5) under low-temperature treatment

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of low-temperature annealing conditions on the properties and structure of YBa2Cu3O y (123) with y ≤ 6.5 has been investigated. It has been shown that, at T = 200°C, the transition to the orthorhombic phase and the separation into phases with different oxygen concentrations occur slowly. With an increase in the temperature, the rate of phase transformations increases significantly. The phase transition of tetragonal YBa2Cu3O6.3 to the orthorhombic phase due to the oxygen ordering leads to the appearance of superconductivity. There is a direct evidence that, at temperatures T ≤ 300°C in the absence of water vapor, the 123 compound is separated into phases with different oxygen concentrations. The phase separation is accompanied by the formation of an oxygen-enriched phase with a critical temperature T c ≈ 90 K (at T = 200°C) or T c ≈ 76 K (at T = 300°C). The presence of water vapor in the low-temperature annealing atmosphere significantly accelerates all the processes occurring in the system; however, the incorporation of water into the structure of the 123 compound leads to its transition into the 124-type phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Plakida, High-Temperature Superconductivity: Experiment and Theory (Springer, Berlin, 1994; International Education Program, Moscow, 1996).

    Google Scholar 

  2. S. V. Sudareva, E. I. Kuznetsova, T. P. Krinitsina, I. B. Bobylev, and E. P. Romanov, Physica C (Amsterdam) 331, 263 (2000).

    Article  ADS  Google Scholar 

  3. E. I. Kuznetsova, Yu. V. Blinova, S. V. Sudareva, T. P. Krinitsina, I. B. Bobylev, and E. P. Romanov, Phys. Met. Metallogr. 102(2), 213 (2006).

    Article  ADS  Google Scholar 

  4. S. V. Sudareva, M. V. Kuznetsov, E. I. Kuznetsova, Yu. V. Blinova, E. P. Romanov, and I. B. Bobylev, Phys. Met. Metallogr. 108(6), 569 (2009).

    Article  ADS  Google Scholar 

  5. I. B. Bobylev and N. A. Zyuzeva, Phys. Met. Metallogr. 112(2), 127 (2011).

    Article  ADS  Google Scholar 

  6. J. G. Tompson, B. G. Hyde, R. L. Withers, J. S. Anderson, J. D. Fitz Gerald, J. Bitmead, M. S. Paterson, and A. M. Stwart, Mater. Res. Bull. 22, 1715 (1987).

    Article  Google Scholar 

  7. O. Wada, T. Odaka, M. Wakata, T. Ogama, and A. Yosidome, J. Appl. Phys. 68, 5283 (1990).

    Article  ADS  Google Scholar 

  8. Zhao Rupeng, M. J. Goringe, S. Myhra, and P. S. Turner, Philos. Mag. A 66, 491 (1992).

    Article  ADS  Google Scholar 

  9. W. Gunther, R. Schollhorn, H. Siegle, and C. Thomsen, Solid State Ionics 84, 23 (1996).

    Article  Google Scholar 

  10. W. Gunther, R. Schollhorn, M. Epple, H. Siegle, Ch. Thomsen, B. Kabius, U. Poppe, J. Schubert, and C. W. Zander, Philos. Mag. A 79, 449 (1999).

    Article  ADS  Google Scholar 

  11. B. Schougaard Steen, F. Ali Mehnaaz, and T. McDevitt John, Appl. Phys. Lett. 84, 1144 (2004).

    Article  ADS  Google Scholar 

  12. A. V. Dooglav, A. V. Egorov, I. R. Mukhamedshin, A. V. Savincov, H. Alloul, J. Bobroff, W. A. MacFarlane, P. Mendels, G. Collin, N. Blanchard, P. G. Picard, J. C. King, and J. Lord, Phys. Rev. B: Condens. Matter 70, 054506–1 (2004).

    Article  ADS  Google Scholar 

  13. S. V. Sudareva, E. P. Romanov, T. P. Krinitsina, E. I. Kuznetsova, Yu. V. Blinova, I. B. Bobylev, N. A. Zyuzeva, and A. M. Burkhanov, Phys. Met. Metallogr. 106(4), 364 (2008).

    Article  ADS  Google Scholar 

  14. I. B. Bobylev, E. I. Kuznetsova, N. A. Zyuzeva, T. P. Krinitsina, S. V. Sudareva, and E. P. Romanov, Phys. Met. Metallogr. 110(4), 378 (2010).

    Article  ADS  Google Scholar 

  15. I. B. Bobylev, E. G. Gerasimov, and N. A. Zyuzeva, J. Exp. Theor. Phys. 115(3), 474 (2012).

    Article  ADS  Google Scholar 

  16. I. B. Bobylev, E. G. Gerasimov, and N. A. Zyuzeva, Phys. Solid State 54(9), 1741 (2012).

    Article  ADS  Google Scholar 

  17. I. B. Bobylev and N. A. Zyuzeva, Phys. Solid State 54(7), 1332 (2012).

    Article  ADS  Google Scholar 

  18. Yu. A. Izyumov and E. Z. Kurmaev, Phys.-Usp. 51(1), 23 (2008).

    Article  ADS  Google Scholar 

  19. L. G. Mamsurova, N. G. Trusevich, K. S. Pigal’skii, N. B. Butko, and A. A. Vishnev, Bull. Russ. Acad. Sci.: Phys. 75(8), 1136 (2011).

    Article  Google Scholar 

  20. R. J. Cava, A. W. Hevat, E. A. Hevat, B. Batlogg, M. Marezio, K. M. Rabe, J. J. Krajewski, W. F. Peck, and L. W. Rupp, Physica C (Amsterdam) 165, 419 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Bobylev.

Additional information

Original Russian Text © I.B. Bobylev, N.A. Zyuzeva, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 7, pp. 1284–1289.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, I.B., Zyuzeva, N.A. Phase transformations in YBa2Cu3O y (y ≤ 6.5) under low-temperature treatment. Phys. Solid State 57, 1307–1313 (2015). https://doi.org/10.1134/S1063783415070082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415070082

Keywords

Navigation