Advertisement

Physics of the Solid State

, Volume 57, Issue 6, pp 1244–1248 | Cite as

Magnetoabsorption of elliptically polarized electromagnetic radiation by graphene: The relaxation-time approximation and Monte Carlo method

  • S. V. Kryuchkov
  • E. I. Kukhar’Email author
  • D. V. Zav’yalov
Graphenes
  • 53 Downloads

Abstract

It has been shown that the linewidth of cyclotron absorption in band-gap graphene is nonzero even in the absence of electron scattering. The functional temperature dependence of the cyclotron absorption linewidth, which is applicable to band-gap graphene in the absence of collisions, has been analytically determined. The power of the elliptically polarized electromagnetic wave absorbed by graphene in the presence of a dc magnetic field has been numerically calculated. The Monte Carlo numerical experiment has confirmed the analytical calculations based on the Boltzmann equation.

Keywords

Optical Phonon Boltzmann Kinetic Equation Relaxation Time Approximation Cyclotron Absorption Monte Carlo Numerical Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 97, 266405 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    A. Mattausch and O. Pankratov, Phys. Rev. Lett. 99, 076802 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    L. A. Falkovsky, Phys.-Usp. 178(9), 887 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Mikhailov, Physica E (Amsterdam) 40, 2626 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Phys. Rev. B: Condens. Matter 78, 045405 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, J. Phys.: Condens. Matter 22, 175503 (2010).ADSGoogle Scholar
  9. 9.
    D. Bolmatov and C.-Y. Mou, Physica B (Amsterdam) 405, 2896 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    V. Apalkov and T. Chakraborty, Phys. Rev. B: Condens. Matter 86, 035401 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    G. Konstantatos,M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, Nat. Nanotechnol. 7, 363 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    S. V. Kryuchkov, E. I. Kukhar’, and D. V. Zav’yalov, Phys. Wave Phenom. 21, 207 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    E. A. Henriksen, Z. Jiang, L.-C. Tung, M. E. Schwartz, M. Takita, Y.-J. Wang, P. Kim, and H. L. Stormer, Phys. Rev. Lett. 100, 087403 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupinski, C. Faugeras, G. Martinez, and M. Potemski, Phys. Rev. B: Condens. Matter 82, 165305 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    S. G. Sharapov and V. P. Gusynin, Phys. Rev. B: Condens. Matter 71, 125124 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    S. V. Kryuchkov and E. I. Kukhar’, Phys. Solid State 54(1), 202 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    S. V. Kryuchkov, E. I. Kukhar’, and D. V. Zav’yalov, Physica E (Amsterdam) 53, 124 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    S. V. Kryuchkov and E. I. Kukhar’, Physica B (Amsterdam) 445, 93 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    I. A. Dmitriev, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. Lett. 91, 226802 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B: Condens. Matter 73, 125411 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    V. P. Gusynin and S. G. Sharapov, Phys. Rev. B: Condens. Matter 73, 245411 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, J. Phys.: Condens. Matter 19, 026222 (2007).ADSGoogle Scholar
  23. 23.
    T. Morimoto, Y. Hatsugai, and H. Aoki, Phys. Rev. B: Condens. Matter 78, 073406 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Barlas, R. Cote, K. Nomura, and A. H. MacDonald, Phys. Rev. Lett. 101, 097601 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    A. Pound, J. P. Carbotte, and E. J. Nicol, Phys. Rev. B: Condens. Matter 85, 125422 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    U. Briskot, I. A. Dmitriev, and A. D. Mirlin, Phys. Rev. B: Condens. Matter 87, 195432 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    A. Yu. Ozerin, JETP Lett. 98(12), 839 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, Phys. Rev. Lett. 98, 197403 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    R. S. Deacon, K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, Phys. Rev. B: Condens. Matter 76, 081406(R) (2007).ADSCrossRefGoogle Scholar
  30. 30.
    L. G. Booshehri, C. H. Mielke, D. G. Rickel, S. A. Crooker, Q. Zhang, L. Ren, E. H. Haroz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J. Kono, Phys. Rev. B: Condens. Matter 85, 205407 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    S. A. Mikhailov, Phys. Rev. B: Condens. Matter 79, 241309(R) (2009).ADSCrossRefGoogle Scholar
  32. 32.
    F. G. Bass and A. P. Tetervov, Phys. Rep. 140, 237 (1986).ADSCrossRefGoogle Scholar
  33. 33.
    M. M. Glazov and S. D. Ganichev, Phys. Rep. 535, 101 (2014).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    K. Seeger, Semiconductor Physics: An Introduction (Springer-Verlag, Berlin, 1973; Mir, Moscow, 1977).CrossRefGoogle Scholar
  35. 35.
    R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (Taylor and Francis, New York, 1988).zbMATHCrossRefGoogle Scholar
  36. 36.
    I. M. Sobol’, A Primer for the Monte Carlo Method (Nauka, Moscow, 1973; CRC Press, Boca Raton, Florida, 1994).Google Scholar
  37. 37.
    E. H. Hwang and S. Das Sarma, Phys. Rev. B: Condens. Matter 77, 115449 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. V. Kryuchkov
    • 1
    • 2
  • E. I. Kukhar’
    • 1
    Email author
  • D. V. Zav’yalov
    • 2
  1. 1.Volgograd Socio-Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations