Skip to main content
Log in

Structure and dielectric properties of solid solutions Bi7Ti4 + x W x Nb1 − 2x O21 (x = 0–0.5)

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structural and electrophysical characteristics of a series of solid solutions of layered perovskite-type oxides Bi7Ti4 + x W x Nb1 − 2x O21 (x = 0–0.5) have been investigated. According to X-ray powder dif- fraction data, all the studied compounds are single-phase and have the structure of Aurivillius phases (m = 2.5) with an orthorhombic crystal lattice (space group I2cm, Z = 2). The changes in the tetragonal and orthorhombic distortions of perovskite-like layers in the compounds have been considered depending on their chemical composition. The temperature dependences of the relative permittivity ε(T) have been measured. It has been shown that the Curie temperature T C of the perovskite-type oxides Bi7Ti4 + x W x Nb1 − 2x O21 (x = 0–0.5) decreases linearly with an increase in the parameter x. The activation energies of charge carriers have been obtained in different temperature ranges. It has been found that there are three temperature regions with very different activation energies due to different natures of charge carriers in the studied compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aurivillius, Ark. Kemi 1, 463 (1949).

    Google Scholar 

  2. B. Aurivillius, Ark. Kemi 1, 499 (1949).

    Google Scholar 

  3. B. Aurivillius, Ark. Kemi 2, 512 (1950).

    Google Scholar 

  4. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, 682 (1999).

    Article  ADS  Google Scholar 

  5. A. P. de Araujo, J. D. Cuchiaro, L. D. Mcmillan, M. C. Scott, and J. F. Scott, Nature (London) 374, 627 (1995).

    Article  ADS  Google Scholar 

  6. X. Chen, J. Xiao, Y. Xue, X. Zeng, F. Yang, and P. Su, Ceram. Int. 40, 2635 (2014).

    Article  Google Scholar 

  7. V. G. Vlasenko, V. A. Shuvaeva, S. I. Levchenkov, Ya. V. Zubavichus, and S. V. Zubkov, J. Alloys Compd. 610, 184 (2014).

    Article  Google Scholar 

  8. H. Zou, X. Hui, X. Wang, D. Peng, J. Li, Y. Li, and X. Yao, J. Appl. Phys. 114, 223103 (2013).

    Article  ADS  Google Scholar 

  9. H. Nakajima, T. Mori, S. Itoh, and M. Watanabe, Solid State Commun. 129, 421 (2004).

    Article  ADS  Google Scholar 

  10. F. Gao, G. J. Ding, H. Zhou, G. H. Wu, N. Qin, and D. H. Bao, J. Electrochem. Soc. 158 (5), G128 (2011).

    Article  Google Scholar 

  11. V. G. Vlasenko, A. T. Shuvaev, and D. S. Drannikov, Powder Diffr. 20, 1 (2005).

    Article  ADS  Google Scholar 

  12. A. T. Shuvaev, V. G. Vlasenko, D. S. Drannikov, and I. A. Zarubin, Inorg. Mater. 41 (10), 1085 (2005).

    Article  Google Scholar 

  13. I. A. Zarubin, V. G. Vlasenko, A. T. Shuvaev, G. P. Petin, and E. T. Shuvaeva, Bull. Russ. Acad. Sci.: Phys. 72 (10), 1406 (2008).

    Article  Google Scholar 

  14. I. Coondoo, S. K. Agarwal, and A. K. Jha, Mater. Res. Bull. 44, 1288 (2009).

    Article  Google Scholar 

  15. I. Coondoo, N. Panwar, and A. K. Jha, Physica B (Amsterdam) 406, 374 (2011).

    Article  ADS  Google Scholar 

  16. J. K. Kim, T. K. Song, S. S. Kim, and J. Kim, Mater. Lett. 57 (4), 964 (2002).

    Article  Google Scholar 

  17. W. T. Lin, T. W. Chiu, H. H. Yu, J. L. Lin, and S. Lin, J. Vac. Sci. Technol., A 21, 787 (2003).

    Article  ADS  Google Scholar 

  18. Y. Wu, S. J. Limmer, T. P. Chou, C. Nguyen, and G. Z. Cao, J. Mater. Sci. Lett. 21, 947 (2002).

    Article  Google Scholar 

  19. C. Long, H. Fan, M. Li, and Q. Li, Cryst. Eng. Commun. 14, 7201 (2012).

    Article  Google Scholar 

  20. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 75 (1976).

    Article  Google Scholar 

  21. Z. G. Yi, Y. Wang, Y. X. Li, and Q. R. Yin, J. Appl. Phys. 99, 114101 (2006).

    Article  ADS  Google Scholar 

  22. W. Kraus and G. Nolze, PowderCell for Windows. Version 2.3 (Federal Institute for Materials Research and Testing, Berlin, 1999).

    Google Scholar 

  23. A. Yokoi and H. Ogawa, Mater. Sci. Eng., B 129, 80 (2006).

    Article  Google Scholar 

  24. S. Horiuchi, T. Kikuchi, and M. Goto, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 33, 701 (1977).

    Article  ADS  Google Scholar 

  25. P. Duran, F. Capel, C. Moure, M. Villegas, J.F. Fernandez, J. Tartaj, and A. C. Caballero, J. Eur. Ceram. Soc. 21, 1 (2001).

    Article  Google Scholar 

  26. D. Mercurio, G. Trolliard, T. Hansen, and J. P. Mercurio, Int. J. Inorg. Mater. 2 (5), 397 (2000).

    Article  Google Scholar 

  27. V. M. Goldschmidt, Geochemische Verteilungsgesetze der Elemente (Norske, Oslo, 1927).

    Google Scholar 

  28. V. A. Isupov, Zh. Neorg. Khim 39 (5), 731 (1994).

    Google Scholar 

  29. F. Chu, D. Damjanovic, O. Steiner, and N. Setter, J. Am. Ceram. Soc. 78, 3142 (1995).

    Article  Google Scholar 

  30. P. Boullay and D. Mercurio, Integr. Ferroelectr. 62, 149 (2004).

    Article  Google Scholar 

  31. C. Shao, Y. Lu, D. Wang, and Y. Li, J. Eur. Ceram. Soc. 32, 3781 (2012).

    Article  Google Scholar 

  32. K. R. Kendall, J. K. Thomas, and H. C. Zur Loye, Chem. Mater. 7 (1), 50 (1995).

    Article  Google Scholar 

  33. C. Navas, H. L. Tuller, and H.-C. Zur Loye, J. Eur. Ceram. Soc. 19, 737 (1999).

    Article  Google Scholar 

  34. N. A. Lomanova and V. V. Gusarov, Nanosist.: Fiz., Khim., Mat. 3 (6), 112 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Vlasenko.

Additional information

Original Russian Text © V.G. Vlasenko, S.V. Zubkov, V.A. Shuvaeva, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 5, pp. 886–891.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasenko, V.G., Zubkov, S.V. & Shuvaeva, V.A. Structure and dielectric properties of solid solutions Bi7Ti4 + x W x Nb1 − 2x O21 (x = 0–0.5). Phys. Solid State 57, 900–906 (2015). https://doi.org/10.1134/S1063783415050327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415050327

Keywords

Navigation