Skip to main content
Log in

Formation and lithium doping of graphene on the surface of cobalt silicide

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The intercalation of silicon under graphene on the Co(0001) surface, which is accompanied by the formation of a silicon solid solution in cobalt and by the formation of a surface crystalline Co2Si phase, has been investigated using photoelectron spectroscopy. It has been shown that the formation of cobalt silicide leads to a substantial weakening of the hybridization of electronic states of graphene and cobalt and to the recovery of the Dirac spectrum of electronic states of graphene near the Fermi level. This has made it possible to investigate the electron doping of graphene on the cobalt silicide substrate upon deposition of lithium on its surface. It has been found that doping with lithium leads to a significant charge transfer onto graphene, and the electron concentration reaches 3.1 × 1014 cm−2. Moreover, the specific form of the Fermi surface creates favorable conditions for the enhancement of the electron-phonon coupling. As a result, the formed system can be considered as a candidate for the creation of superconductivity in single-layer graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Dhand, K. Y. Rhee, H. J. Kim, and D. H. Jung, J. Nanomater. 2013, 763953 (2013).

    Article  Google Scholar 

  2. H. Shen, L. Zhang, M. Liu, and Z. Zhang, Theranostics 2 (3), 283 (2012).

    Article  MathSciNet  Google Scholar 

  3. Yu. E. Lozovik, S. L. Ogarkov, and A. A. Sokolik, J. Exp. Theor. Phys. 110 (1), 49 (2010).

    Article  ADS  Google Scholar 

  4. G. Profeta, M. Calandra, and F. Mauri, Nat. Phys. 8, 131 (2012).

    Article  Google Scholar 

  5. T. Zhang, P. Cheng, W.-J. Li, Y.-J. Sun, G. Wang, X.-G. Zhu, K. He, L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H.-Q. Lin, J.-F. Jia, and Q.-K. Xue, Nat. Phys. 6, 104 (2010).

    Article  Google Scholar 

  6. S. Kelty, C. Chen, and C. Lieber, Nature (London) 352, 223 (1991).

    Article  ADS  Google Scholar 

  7. N. Hannay, T. Geballe, B. Mattias, K. Andres, P. Schmidt, and D. Macnair, Phys. Rev. Lett. 14, 225 (1965).

    Article  ADS  Google Scholar 

  8. A. Grüneis, C. Attaccalite, A. Rubio, D. V. Vyalikh, S. L. Molodtsov, J. Fink, R. Follath, W. Eberhardt, B. Büchner, and T. Pichler, Phys. Rev. B: Condens. Matter 79, 205106 (2009).

    Article  ADS  Google Scholar 

  9. Z. Tang, L. Zhang, N. Wang, X. Zhang, G. Wen, G. Li, J. Wang, C. Chan, and P. Sheng, Science (Washington) 292, 2462 (2001).

    Article  ADS  Google Scholar 

  10. G. Csanyi, P. Littlewood, A. Nevidomskyy, C. Pickard, and B. Simons, Nat. Phys. 1, 42 (2005).

    Article  Google Scholar 

  11. M. Bianchi, E. D. L. Rienks, S. Lizzit, A. Baraldi, R. Balog, L. Hornekaer, and P. Hofmann, Phys. Rev. B: Condens. Matter 81, 041403 (2010).

    Article  ADS  Google Scholar 

  12. A. Fedorov, N. Verbitskiy, D. Haberer, C. Struzzi, L. Petaccia, D. Usachov, O. Vilkov, D. Vyalikh, J. Fink, M. Knupfer, B. Büchner, and A. Grüneis, Nat. Commun. 5, 3257 (2014).

    Article  ADS  Google Scholar 

  13. O. Vilkov, A. Fedorov, D. Usachov, L. V. Yashina, A. V. Generalov, K. Borygina, N. I. Verbitskiy, A. Grüneis, and D. V. Vyalikh, Sci. Rep. 3, 2168 (2013).

    Article  ADS  Google Scholar 

  14. J. Kittl, K. Opsomer, C. Torregiani, C. Demeurisse, S. Mertens, D. Brunco, M. Van Dal, and A. Lauwers, Mater. Sci. Eng., B 154–155, 144 (2008).

    Article  Google Scholar 

  15. C. Lavoie, F. d’Heurle, C. Detavernier, and C. Cabral, Jr., Microelectron. Eng. 70, 144 (2003).

    Article  Google Scholar 

  16. J. Lasky, J. Nakos, O. Cain, and P. Geiss, IEEE Trans. Electron Dev. 38, 262 (1991).

    Article  ADS  Google Scholar 

  17. Silicide Technology for Integrated Circuits, Ed. by L. Chen (Institution of Engineering and Technology, London, 2004).

  18. A. Grüneis, K. Kummer, and D. V. Vyalikh, New J. Phys. 11, 073050 (2009).

    Article  ADS  Google Scholar 

  19. A. Varykhalov, D. Marchenko, J. Sánchez-Barriga, M.R. Scholz, B. Verberck, B. Trauzettel, T. O. Wehling, C. Carbone, and O. Rader, Phys. Rev. X 2, 041017 (2012).

    Google Scholar 

  20. Y. S. Dedkov and M. Fonin, New J. Phys. 12, 125004 (2010).

    Article  ADS  Google Scholar 

  21. A. Varykhalov and O. Rader, Phys. Rev. B: Condens. Matter 80, 035437 (2009).

    Article  ADS  Google Scholar 

  22. J. Sänchez-Barriga, A. Varykhalov, M. Scholz, O. Rader, D. Marchenko, A. Rybkin, A. Shikin, and E. Vescovo, Diamond Relat. Mater. 19, 734 (2010).

    Article  ADS  Google Scholar 

  23. E. Plummer, J. Shi, S. Tang, E. Rotenberg, and S. Kevan, Prog. Surf. Sci. 74, 251 (2003).

    Article  ADS  Google Scholar 

  24. T. Valla, J. Camacho, Z.-H. Pan, A. V. Fedorov, A. C. Walters, C. A. Howard, and M. Ellerby, Phys. Rev. Lett. 102, 107007 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Usachov.

Additional information

Original Russian Text © D.Yu. Usachov, A.V. Fedorov, O.Yu. Vilkov, A.V. Erofeevskaya, A.S. Vopilov, V.K. Adamchuk, D.V. Vyalikh, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 5, pp. 1024–1030.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usachov, D.Y., Fedorov, A.V., Vilkov, O.Y. et al. Formation and lithium doping of graphene on the surface of cobalt silicide. Phys. Solid State 57, 1040–1047 (2015). https://doi.org/10.1134/S1063783415050297

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415050297

Keywords

Navigation