Skip to main content
Log in

Thermal stability of hexaprismane C12H12 and octaprismane C16H16

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of quantum-mechanical calculations of elementary prismanes—hexaprismane C12H12 and octaprismane C16H16—have been presented. Their stability has been investigated in terms of the density functional theory and nonorthogonal tight-binding model, and the heights of potential barriers preventing isomerization and decay have been determined. It has been established based on the analysis of the molecular dynamics data and the hypersurface of the potential energy of these metastable compounds that hexaprismane and octaprismane have a rather high kinetic stability, which indicates the possibility of the formation of carbon polyprismanes for applications in microelectronics and nanoelectronics, power engineering, pharmaceutics, metrology, and information technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Lewars, Modeling Marvels: Computational Anticipation of Novel Molecules (Springer-Verlag, Dordrecht, 2008), p. 185.

    Book  Google Scholar 

  2. T. J. Katz and N. Acton, J. Am. Chem. Soc. 95, 2738 (1973).

    Article  Google Scholar 

  3. P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 3157 (1964).

    Article  Google Scholar 

  4. P. E. Eaton, Y. S. Or, and S. J. Branca, J. Am. Chem. Soc. 103, 2134 (1981).

    Article  Google Scholar 

  5. R. L. Disch and J. M. Schulman, J. Am. Chem. Soc. 110, 2102 (1988).

    Article  Google Scholar 

  6. R. M. Minyaev, V. I. Minkin, T. N. Gribanova, A. G. Starikov, and R. Hoffmann, J. Org. Chem. 68, 8588 (2003).

    Article  Google Scholar 

  7. S. Kuzmin and W. W. Duley, Phys. Lett. A 374, 1374 (2010).

    Article  MATH  ADS  Google Scholar 

  8. S. Kuzmin and W. W. Duley, Fullerenes, Nanotubes, Carbon Nanostruct. 20, 730 (2012).

    Article  Google Scholar 

  9. S. Kuzmin and W. W. Duley, Phys. Rev. A: At., Mol., Opt. Phys. 83, 022507 (2011).

    Article  ADS  Google Scholar 

  10. S. Kuzmin and W. W. Duley, Ann. Phys. (Berlin) 525, 297 (2013).

    Article  ADS  Google Scholar 

  11. R. M. Minyaev, T. N. Gribanova, and V. I. Minkin, Dokl. Chem. 453 (1–2), 270 (2013).

    Article  Google Scholar 

  12. N. Pour, E. Altus, H. Basch, and S. Hoz, J. Phys. Chem. C 113, 3467 (2009).

    Article  Google Scholar 

  13. N. Pour, E. Altus, H. Basch, and S. Hoz, J. Phys. Chem. C 114, 10386 (2010).

    Article  Google Scholar 

  14. N. Pour, L. Itzhaki, B. Hoz, E. Altus, H. Basch, and S. Hoz, Angew. Chem., Int. Ed. 45, 5981 (2006).

    Article  Google Scholar 

  15. M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 53 (12), 2532 (2011).

    Article  ADS  Google Scholar 

  16. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).

    Article  Google Scholar 

  17. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter 37, 785 (1988).

    Article  ADS  Google Scholar 

  18. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  19. M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).

    Article  ADS  Google Scholar 

  20. J. L. Lebowitz, J. K. Percus, and L. Verlet, Phys. Rev. 153, 250 (1967).

    Article  ADS  Google Scholar 

  21. E. M. Pearson, T. Halicioglu, and W. A. Tiller, Phys. Rev. A: At., Mol., Opt. Phys. 32, 3030 (1985).

    Article  ADS  Google Scholar 

  22. W. W. Wood, J. J. Erpenbeck, G. A. Backer, Jr., and J. D. Johnson, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 63, 011106 (2000).

    Article  Google Scholar 

  23. C. Xu and G. E. Scuseria, Phys. Rev. Lett. 72, 669 (1994).

    Article  ADS  Google Scholar 

  24. J. Jellinek and A. Goldberg, J. Chem. Phys. 113, 2570 (2000).

    Article  ADS  Google Scholar 

  25. M. M. Maslov and K. P. Katin, Chem. Phys. 387, 66 (2011).

    Article  ADS  Google Scholar 

  26. M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51 (3), 645 (2009).

    Article  ADS  Google Scholar 

  27. M. M. Maslov, Russ. J. Phys. Chem. B 4 (1), 170 (2010).

    Article  Google Scholar 

  28. M. M. Maslov, K. P. Katin, A. I. Avkhadieva, and A. I. Podlivaev, Russ. J. Phys. Chem. B 8 (2), 152 (2014).

    Article  Google Scholar 

  29. X.-J. Han, Y. Wang, Z.-Z. Lin, W. Zhang, J. Zhuang, and X.-J. Ning, J. Chem. Phys. 132, 064103 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Maslov.

Additional information

Original Russian Text © S.A. Shostachenko, M.M. Maslov, V.S. Prudkovskii, K.P. Katin, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 5, pp. 1007–1011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shostachenko, S.A., Maslov, M.M., Prudkovskii, V.S. et al. Thermal stability of hexaprismane C12H12 and octaprismane C16H16 . Phys. Solid State 57, 1023–1027 (2015). https://doi.org/10.1134/S1063783415050261

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415050261

Keywords

Navigation