Skip to main content
Log in

Split interstitials in computer models of single-crystal and amorphous copper

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of interstitial atoms in a dumbbell configuration on elastic moduli of single crystal copper has been investigated using molecular dynamics simulation. It has been shown that shear components of the dipole tensor and λ-tensor increase when the concentration of split interstitials exceeds 0.6–0.7%. This is associated with their interaction responsible for a significant change in the distribution of orientations of split interstitials and, hence, for a change in the type of the induced local symmetry breakings of the face-centered cubic structure. It has been found that, in the model of amorphous copper, there are “defects” (elastic dipoles) with properties similar to those of split interstitials in the single crystal. The deviatoric component of their λ-tensor is more than an order of magnitude greater than the dilatation component and is responsible for the decreased value of the shear modulus and thermal effects in noncrystalline metallic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).

    Article  ADS  Google Scholar 

  2. A. V. Granato, Eur. J. Phys. 87, 18 (2014).

    Article  ADS  Google Scholar 

  3. G. C. S. Lee and J. C. M. Li, Phys. Rev. B: Condens. Matter 39, 9302 (1989).

    Article  ADS  Google Scholar 

  4. K. Nordlund and R. S. Averback, Phys. Rev. Lett. 80, 4201 (1998).

    Article  ADS  Google Scholar 

  5. A. Kanigel, J. Adler, and E. Polturak, Int. J. Mod. Phys. C 12, 727 (2001).

    Article  ADS  Google Scholar 

  6. H. Zhang, M. Khalkhali, Q. Liu, and J. F. Douglas, J. Chem. Phys. 138, 12A538 (2013).

    Google Scholar 

  7. Y. Ashkenazy and R. S. Averback, Europhys. Lett. 79, 26005 (2007).

    Article  ADS  Google Scholar 

  8. A. V. Granato, J. Phys. Chem. Solids 55, 931 (1994).

    Article  ADS  Google Scholar 

  9. A. V. Granato, J. Non-Cryst. Solids 307–310, 376 (2002).

    Article  Google Scholar 

  10. A. V. Granato, J. Non-Cryst. Solids 352, 4821 (2006).

    Article  ADS  Google Scholar 

  11. A. V. Granato and V. A. Khonik, Phys. Rev. Lett. 93, 155502 (2004).

    Article  ADS  Google Scholar 

  12. S. V. Khonik, A. V. Granato, D. M. Joncich, A. Pompe, and V. A. Khonik, Phys. Rev. Lett. 100, 065501 (2008).

    Article  ADS  Google Scholar 

  13. A. V. Granato, D. M. Joncich, and V. A. Khonik, Appl. Phys. Lett. 97, 171911 (2010).

    Article  ADS  Google Scholar 

  14. Yu. P. Mitrofanov, A. S. Makarov, V. A. Khonik, A. V. Granato, D. M. Joncich, and S. V. Khonik, Appl. Phys. Lett. 101, 131903 (2012).

    Article  ADS  Google Scholar 

  15. A. S. Makarov, V. A. Khonik, G. Wilde, Yu. P. Mitrofanov, and S. V. Khonik, Intermetallics 44, 106 (2014).

    Article  Google Scholar 

  16. K. Nordlund, Y. Ashkenazy, R. S. Averback, and A. V. Granato, Europhys. Lett. 71, 625 (2005).

    Article  ADS  Google Scholar 

  17. R. A. Konchakov and V. A. Khonik, Phys. Solid State 56 [!](7), 1368 (2014).

    Article  ADS  Google Scholar 

  18. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972; Atomizdat, Moscow, 1975).

    Google Scholar 

  19. N. P. Kobelev, V. A. Khonik, A. S. Makarov, G. V. Afonin, and Yu. P. Mitrofanov, J. Appl. Phys. 115, 033513 (2014).

    Article  ADS  Google Scholar 

  20. S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  MATH  ADS  Google Scholar 

  21. H. W. Sheng, M.J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, Phys. Rev. B: Condens. Matter. 83, 134118 (2011).

    Article  ADS  Google Scholar 

  22. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  23. M. E. Tuckerman, J. Alejandre, R. Lopez-Rendon, A. L. Jochim, and G. J. Martyna, Phys. A: Math. Gen. 39, 5629 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. S. Nose, J. Chem. Phys. 81, 511 (1984).

    Article  ADS  Google Scholar 

  25. W. G. Hoover, Phys. Rev. A: At., Mol., Opt. Phys. 31, 1695 (1985).

    Article  ADS  Google Scholar 

  26. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  ADS  Google Scholar 

  27. D. A. Freedman, D. Roundy, and T. A. Arias, Phys. Rev. B: Condens. Matter 80, 064108 (2009).

    Article  ADS  Google Scholar 

  28. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950).

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Kelly and G. W. Groves, Crystallography and Crystal Defects (Longman, London, 1970; Mir, Moscow, 1974).

    Google Scholar 

  30. C. Varvenne, F. Bruneval, M. Marinica, and E. Clouet, Phys. Rev. B: Condens. Matter 88, 134102 (2013).

    Article  ADS  Google Scholar 

  31. P. H. Dederichs, C. Lehmann, H. R. Schober, A. Scholz, and R. Zeller, J. Nucl. Mater. 69–70, 176 (1978).

    Article  Google Scholar 

  32. L. E. Rehn, J. Holder, A. V. Granato, R. R. Coltman, and F. W. Young, Phys. Rev. B: Solid State 10, 349 (1974).

    Article  ADS  Google Scholar 

  33. M. Born, J. Chem. Phys. 7, 591 (1939).

    Article  ADS  Google Scholar 

  34. M. Celino, Eur. Phys. J.: Spec. Top. 196, 35 (2011).

    Google Scholar 

  35. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).

    Google Scholar 

  36. J. M. Dickey and A. Paskin, Phys. Rev. 188, 1407 (1969).

    Article  ADS  Google Scholar 

  37. V. A. Khonik and N. P. Kobelev, J. Appl. Phys. 115, 093510 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Konchakov.

Additional information

Original Russian Text © R.A. Konchakov, V.A. Khonik, N.P. Kobelev, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 5, pp. 844–852.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konchakov, R.A., Khonik, V.A. & Kobelev, N.P. Split interstitials in computer models of single-crystal and amorphous copper. Phys. Solid State 57, 856–865 (2015). https://doi.org/10.1134/S1063783415050169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415050169

Keywords

Navigation