Skip to main content
Log in

Lattice dynamics of rare-earth titanates with the structure of pyrochlore R 2Ti2O7 (R = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu): Ab initio calculation

  • Lattice Dynamics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The ab initio calculation has been performed for the crystal structure and the phonon spectrum of titanates with the structure of pyrochlore R 2Ti2O7 (R = Gd-Lu). The frequencies and types of fundamental vibrations have been found. For R = Tb, Tm, and Yb, this calculation has been carried out for the first time; furthermore, there is no available information on experimental studies of the phonon spectrum for Tm and Yb. The influence of hydrostatic pressure to 35 GPa on the structure, dynamics, and elastic properties of the Gd2Ti2O7 lattice has been investigated. The dependence of the phonon frequencies on the pressure has been obtained. The calculations have predicted that the relative change in the pyrochlore structure volume during compression at pressures to 35 GPa is well described by the third-order Birch-Murnaghan equation of states. The results of the calculations agree with the available experimental data. It has been shown that the structural, dynamic, and elastic properties of the R 2Ti2O7 crystal lattice can be adequately described in the case where the inner shells of the RE ion up to 4f are replaced by the pseudopotential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. 15 (2), 55 (1983).

    Article  Google Scholar 

  2. Kuo-Min Lin, Chih-Cheng Lin, and Yuan-Yao Li, Nanotechnology 17 (6), 1745 (2006).

    Article  ADS  Google Scholar 

  3. S. A. Klimin, M. N. Popova, E. P. Chukalina, B. Z. Malkin, A. R. Zakirov, E. Antic-Fidancev, Ph. Goldner, P. Aschehoug, and G. Dhalenne, Phys. Solid State 47 (8), 1425 (2005).

    Article  ADS  Google Scholar 

  4. R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, and M. Llunell, CRYSTAL09 User’s Manual (University of Torino, Torino, Italy, 2009). http://www.crystal.unito.it/index.php.

    Google Scholar 

  5. G. Kresse, M. Marsman, and J. Furthmuller, VASP the GUIDE (Computational Materials Physics, Faculty of Physics, University of Vienna, 2013). https://www.vasp.at/index.php/documentation.

    Google Scholar 

  6. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  7. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).

    Article  ADS  Google Scholar 

  8. Q. J. Li, L. M. Xu, C. Fan, F. B. Zhang, Y. Y. Lv, B. Ni, Z. Y. Zhao, and X. F. Sun, J. Cryst. Growth 377, 96 (2013).

    Article  ADS  Google Scholar 

  9. T. T. A. Lummen, I. P. Handayani, M. C. Donker, D. Fausti, G. Dhalenne, P. Berthet, A. Revcolevschi, and P. H. M. van Loosdrecht, Phys. Rev. B: Condens. Matter 77, 214310 (2008).

    Article  ADS  Google Scholar 

  10. S. Saha, D. V. S. Muthu, C. Pascanut, N. Dragoe, R. Suryanarayanan, G. Dhalenne, A. Revcolevschi, S. Karmakar, S. M. Sharma, and A. K. Sood, Phys. Rev. B: Condens. Matter 74, 064109 (2006).

    Article  ADS  Google Scholar 

  11. M. Maczka, M. L. Sanjuan, A. F. Fuentes, L. Macalik, J. Hanuza, K. Matsuhira, and Z. Hiroi, Phys. Rev. B: Condens. Matter 79, 214437 (2009).

    Article  ADS  Google Scholar 

  12. S. Saha, S. Singh, B. Dkhil, S. Dhar, R. Suryanarayanan, G. Dhalenne, A. Revcolevschi, and A. K. Sood, Phys. Rev. B: Condens. Matter 78, 214102 (2008).

    Article  ADS  Google Scholar 

  13. M. Maczka, J. Hanuza, K. Hermanowicz, A. F. Fuentes, K. Matsuhira, and Z. Hiroi, J. Raman Spectrosc. 39, 537 (2008).

    Article  Google Scholar 

  14. M. Moria, G. M. Tompsett, N. M. Sammesc, E. Sudad, and Y. Takeda, Solid State Ionics 158, 79 (2003).

    Article  Google Scholar 

  15. F. X. Zhang and S. K. Saxena, Chem. Phys. Lett. 413, 248 (2005).

    Article  ADS  Google Scholar 

  16. A. F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza, and U. Amador, Solid State Sci. 7, 343 (2005).

    Article  ADS  Google Scholar 

  17. W. R. Panero and L. Stixrude, Phys. Rev. B: Condens. Matter 70, 054110 (2004).

    Article  ADS  Google Scholar 

  18. H. Y. Xiao and W. J. Weber, J. Phys.: Condens. Matter. 23, 035501 (2011).

    ADS  Google Scholar 

  19. L. Valenzano, F. J. Torres, K. Doll, F. Pascale, C. M. Zicovich-Wilson, and R. Dovesi, Z. Phys. Chem. 220, 893 (2006).

    Article  Google Scholar 

  20. F. Cora, Mol. Phys. 103, 2483 (2005).

    Article  ADS  Google Scholar 

  21. M. Dolg, H. Stoll, A. Savin, and H. Preuss, Theor. Chim. Acta 75, 173 (1989).

    Article  Google Scholar 

  22. M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta 85, 441 (1993).

    Article  Google Scholar 

  23. J. Yang and M. Dolg, Theor. Chem. Acc. 113, 212 (2005).

    Article  Google Scholar 

  24. Energy-Consistent Pseudopotentials of the Stuttgart. http://www.tc.uni-koeln.de/PP/clickpse.en.html.

  25. S. Kumar and H.C. Gupta, Vib. Spectrosc. 62, 180 (2012).

    Article  Google Scholar 

  26. D. Gryaznov, E. Blokhin, A. Sorokine, E. A. Kotomin, R. A. Evarestov, A. Bussmann-Holder, and J. Mai, J. Phys. Chem. C 117, 13776 (2013).

    Article  Google Scholar 

  27. F. Birch, Phys. Rev. 71 (11), 809 (1947).

    Article  MATH  ADS  Google Scholar 

  28. Yu. Kh. Vekilov and O. M. Krasilnikov, Phys.—Usp. 52 (8), 831 (2009).

    Article  ADS  Google Scholar 

  29. R. Demichelis, B. Civalleri, M. Ferrabone, and R. Dovesi, Int. J. Quantum Chem. 110, 406 (2010).

    Article  ADS  Google Scholar 

  30. M. Mori, G. M. Tompsett, N. M. Sammes, E. Suda, and Y. Takeda, Solid State Ionics 158, 79 (2003).

    Article  Google Scholar 

  31. M. T. Vandenborre and E. Husson, J. Solid State Chem. 50, 362 (1983).

    Article  ADS  Google Scholar 

  32. F. X. Zhang, M. Lang, J. W. Wang, U. Becker, and R. C. Ewing, Phys. Rev. B: Condens. Matter 78, 064114 (2008).

    Article  ADS  Google Scholar 

  33. Quanjun Li, Benyuan Cheng, Xue Yang, Ran Liu, Bo Liu, Jing Liu, Zhiqiang Chen, Bo Zou, Tian Cui, and Bingbing Liu, J. Phys. Chem. C 117, 8516 (2013).

    Article  Google Scholar 

  34. H. Arashi, J. Phys. Chem. Solids 53 (3), W-359 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Chernyshev.

Additional information

Original Russian Text © V.A. Chernyshev, V.P. Petrov, A.E. Nikiforov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 5, pp. 982–987.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshev, V.A., Petrov, V.P. & Nikiforov, A.E. Lattice dynamics of rare-earth titanates with the structure of pyrochlore R 2Ti2O7 (R = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu): Ab initio calculation. Phys. Solid State 57, 996–1002 (2015). https://doi.org/10.1134/S1063783415050078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415050078

Keywords

Navigation