Skip to main content
Log in

Optical absorption and color centers in large Ti: Sapphire crystals grown by horizontally directed crystallization under reducing conditions

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The optical absorption in large Ti: sapphire crystals (up to 175 × 175 × 40 mm in size) grown by horizontally directed crystallization with the use of zone leveling of the activator distribution in different reducing atmospheres has been investigated. It has been shown that there is a high uniformity of the optical characteristics and the distribution of color centers based on Ti3+, Ti4+, and activator-vacancy complexes in grown crystals, which is largely determined by the stability of the reduction potential of the growth medium. It has been established that the activator concentration in the Ti4+ charged state in crystals grown in the CO + H2 low-pressure atmosphere does not exceed 1.5% and accounts for 0.2–0.5% of the total activator amount in an Ar atmosphere. The Ti4+ concentration decreases to ∼0.01% after the additional reducing annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Pikuz, Jr., A. Ya. Faenov, I. Yu. Skobelev, and V. E. Fortov, Phys.—Usp. 57(7), 702 (2014).

    Article  ADS  Google Scholar 

  2. S. K. Lee, T. J. Yu, and J. H. Sung, in Conference Paper. CLEO: Science and Innovatons, San Jose, California, United States, May 6–11, 2012.

  3. D. B. Joyce and F. Schmid, J. Crystal Growth 312, 1138 (2010).

    Article  ADS  Google Scholar 

  4. C. B. Nizhankovskii, E. V. Krivonosov, V. V. Baranov, A. T. Budnikov, V. N. Kanishchev, L. A. Grin’, and G. T. Adonkin, Inorg. Mater. 48(11), 1111 (2012).

    Article  Google Scholar 

  5. N. A. Moskvin, V. A. Sandulenko, and E. A. Sidorova, J. Appl. Spectrosc. 32(6), 592 (1980).

    Article  ADS  Google Scholar 

  6. R. L. Aggarwal, A. Sanchez, and M. M. Stuppi, IEEE J. Quantum Electron. 24, 1003 (1988)

    Article  ADS  Google Scholar 

  7. V. S. Konevskii, E. V. Krivonosov, L. A. Litvinov, and M. I. Shakhnovich, J. Appl. Spectrosc. 50(4), 427 (1989)

    Article  ADS  Google Scholar 

  8. E. V. Kryvonosov and L. A. Lytvynov, Crystallogr. Rep. 57, 967 (2012).

    Article  ADS  Google Scholar 

  9. Kh. S. Bagdasarov, V. G. Karyagin, A. M. Kevorkov, D. T. Sviridov, and E. M. Uyukin, Crystallogr. Rep. 39(4), 590 (1994).

    ADS  Google Scholar 

  10. C. B. Nizhankovskiy, A. Ya. Dan’ko, E. V. Krivonosov, and V. M. Puzikov, Inorg. Mater. 46(1), 35 (2010).

    Article  Google Scholar 

  11. M.V. Klassen-Neklyudova, and Kh. S. Bagdasarov, Ruby and Sapphire (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  12. D. S. McClure, J. Chem. Phys. 36, 2757 (1962).

    Article  ADS  Google Scholar 

  13. P. Lacovara, L. Esterowitz, and M. Kokta, IEEE J. Quantum Electron. 21, 1614 (1985).

    Article  ADS  Google Scholar 

  14. F. X. Zha, J. H. Zhang, and S. D. Xia, J. Phys.: Condens. Matter 6, 6497 (1994).

    ADS  Google Scholar 

  15. M. B. Fok, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 59, 3 (1972).

    Google Scholar 

  16. V. G. Tyazhelova, J. Appl. Spectrosc. 10(1), 14 (1969).

    Article  ADS  Google Scholar 

  17. W. Chen, H. Tang, C. Shi, J. Deng, J. Shi, Y. Zhou, S. Xia, Y. Wang, and S. Yin, Appl. Phys. Lett. 67, 317 (1995).

    Article  ADS  Google Scholar 

  18. V. B. Mikhailik, H. Kraus, M. Balcerzyk, W. Czarnacki, M. Moszynski, M. S. Mykhaylyk, and D. Wahl, Nuclear Instrum. Methods Phys. Res., Sect. A 546, 523 (2005).

    Article  ADS  Google Scholar 

  19. H. H. Kusuma and Z. Ibrahim, Solid State Sci. Technol. 20, 41 (2012).

    Google Scholar 

  20. H. H. Kusuma, Z. Ibrahim, and M. K. Saidin, J. Appl. Sci. 11, 888 (2011).

    Article  ADS  Google Scholar 

  21. B. D. Evans, G. J. Pogatshnik, and Y. Chen, Nucl. Instrum. Methods Phys. Res., Sect B 91, 258 (1994).

    Article  ADS  Google Scholar 

  22. B. D. Evans and M. Stapelbroek, Phys. Rev. B: Condens. Matter 18, 7089 (1978).

    Article  ADS  Google Scholar 

  23. K. H. Lee and J. H. Crawford, Phys. Rev. B: Condens. Matter 19, 3217 (1979).

    Article  ADS  Google Scholar 

  24. B. G. Draeger and G. P. Summers, Phys. Rev. B: Condens. Matter 19, 1172 (1979).

    Article  ADS  Google Scholar 

  25. I. A. Vainshtein and V. S. Kortov, Phys. Solid State 42(7), 1259 (2000).

    Article  ADS  Google Scholar 

  26. A. I. Syurdo, Izv. Vyssh. Uchebn. Zaved., Fiz. 54, 277 (2011).

    Google Scholar 

  27. T. C. Bessonova, M. P. Stanislavskii, and V. Ya. Khaimov-Mal’kov, Opt. Spectrosc. 41(1), 87 (1976).

    ADS  Google Scholar 

  28. W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, Phys. Rev. B: Condens. Matter 51, 5682 (1995).

    Article  ADS  Google Scholar 

  29. A. I. Syurdo, Doctoral Dissertation in Mathematical Physics (Ural State Technical University, Yekaterinburg, 2007).

    Google Scholar 

  30. S. Choi and T. Takeuchi, Phys. Rev. Lett. 50, 1474 (1983).

    Article  ADS  Google Scholar 

  31. E. V. Es’kov, M. M. Sabel’nikova, and Yu. A. Ignatov, in Abstracts of Papers of the VI International Scientific Conference “Chemistry of the Solid State and Modern Micro- and Nanotechnologies,” Kislovodsk, Russia, September 17–22, 2006.

  32. E. W. J. Mitchell, J. D. Rigdena, and P. D. Townsend, Philos. Mag. 5, 1013 (1960).

    Article  ADS  Google Scholar 

  33. B. D. Evans, J. Nucl. Mater. 219, 202 (1995).

    Article  ADS  Google Scholar 

  34. J. Stone-Sundberg, M. Kokta, A. Silberstein, G. Venikouas, and K. Heikinnen, in Proceedings of the Workshop: Technological Bottlenecks in CHISP Lasers, Paris, April 1–4, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nizhankovskii.

Additional information

Original Russian Text © S.V. Nizhankovskii, N.S. Sidel’nikova, V.V. Baranov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 4, pp. 763–767.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizhankovskii, S.V., Sidel’nikova, N.S. & Baranov, V.V. Optical absorption and color centers in large Ti: Sapphire crystals grown by horizontally directed crystallization under reducing conditions. Phys. Solid State 57, 781–786 (2015). https://doi.org/10.1134/S1063783415040216

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415040216

Keywords

Navigation