Skip to main content
Log in

Role of edge dislocations in plastic relaxation of GeSi/Si(001) heterostructures: Dependence of introduction mechanisms on film thickness

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

It has been shown that, in the GeSi/Si(001) heterosystem at lattice parameter mismatches of ∼2% and more, a small critical thickness of the introduction of dislocations leads to the implementation of the mechanism of induced nucleation of misfit dislocations. This mechanism consists in that the stress field of an already existing 60° dislocation provokes introduction of a secondary 60° dislocation with an opposite-sign screw component. As a result of the interaction of such dislocation pairs, edge misfit dislocations are formed, which do control the plastic relaxation process. This mechanism is most efficient when dislocations are introduced at the GeSi film thickness only slightly exceeding the critical thickness of the introduction of 60° dislocations, and there are threading dislocations. The dominant type of misfit dislocations (60° or edge) in the Ge-on-Si(001) system can be controlled by varying the mismatch parameter in the heteropair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bossi and G. Attolini, Prog. Cryst. Growth Charact. Mater. 56, 146 (2010).

    Article  Google Scholar 

  2. E. A. Fitzgerald, Y. H. Xie, M. L. Green, D. Brasen, A. R. Kortan, J. Michel, Y.-J. Mii, and B. E. Weir, Appl. Phys. Lett. 59, 811 (1991).

    Article  ADS  Google Scholar 

  3. M. Currie, S.B. Samavedam, T. C. Langdo, W. Leitz, and E. A. Fitzgerald, Appl. Phys. Lett. 72, 1718 (1998).

    Article  ADS  Google Scholar 

  4. S. B. Samavedam, M. Currie, T. Langdo, and E. A. Fitzgerald, Appl. Phys. Lett. 73, 2125 (1998).

    Article  ADS  Google Scholar 

  5. K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, Semicond. Sci. Technol. 22, 29 (2007).

    Article  ADS  Google Scholar 

  6. C. Rosenblad, H. R. Deller, A. Dommann, T. Meyer, P. Schroeter, and H. von Känel, J. Vac. Sci. Technol., A 16, 2785 (1998).

    Article  ADS  Google Scholar 

  7. R. Ginige, B. Corbett, M. Modreanu, C. Barrett, J. Hilgarth, G. Isella, D. Chrastina, and H. von Känel, Semicond. Sci. Technol. 21, 775 (2006).

    Article  ADS  Google Scholar 

  8. G. Isella, J. Osmond, M. Kummer, R. Kaufmann, and H. von Känel, Semicond. Sci. Technol. 22, S26 (2007).

    Article  ADS  Google Scholar 

  9. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, Acta Mater. 61, 617 (2013).

    Article  Google Scholar 

  10. S. Mader, A. E. Blakeslee, and J. J. Angilello, J. Appl. Phys. 45, 4730 (1974).

    Article  ADS  Google Scholar 

  11. E. A. Fitzgerald, D. G. Ast, P. D. Kirchne, G. D. Pettit, and J. M. Woodall, J. Appl. Phys. 63, 693 (1988).

    Article  ADS  Google Scholar 

  12. V. I. Vdovin, J. Cryst. Growth 172, 58 (1997).

    Article  ADS  Google Scholar 

  13. E. P. Kvam, D. M. Maher, and C. J. Humpreys, J. Mater. Res. 5, 1900 (1990).

    Article  ADS  Google Scholar 

  14. J. Narayan and S. Sharan, Mater. Sci. Eng., B 10, 261 (1991).

    Article  Google Scholar 

  15. S. A. Dregia and J. P. Hirsh, J. Appl. Phys. 69, 2169 (1991).

    Article  ADS  Google Scholar 

  16. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, J. Cryst. Growth 312, 3080 (2010).

    Article  ADS  Google Scholar 

  17. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, J. Cryst. Growth 310, 3422 (2008).

    Article  ADS  Google Scholar 

  18. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, J. Appl. Phys. 109, 123519 (2011).

    Article  ADS  Google Scholar 

  19. J. S. Speck, M. A. Brewer, G. Beltz, A. E. Romanov, and W. Pompe, J. Appl. Phys. 80, 3808 (1996).

    Article  ADS  Google Scholar 

  20. T. J. Gosling, J. Appl. Phys. 74, 5415 (1993).

    Article  ADS  Google Scholar 

  21. K. H. Chang, P. K. Bhattacharya, and R. Gibala, J. Appl. Phys. 66, 2993 (1989).

    Article  ADS  Google Scholar 

  22. Yu. B. Bolkhovityanov, A. K. Gutakovskii, A. S. Deryabin, and L. V. Sokolov, Phys. Solid State 56(2), 247 (2014).

    Article  ADS  Google Scholar 

  23. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, M. A. Revenko, and L. V. Sokolov, J. Cryst. Growth 293, 247 (2006).

    Article  ADS  Google Scholar 

  24. R. S. Goldman, K. L. Kavanagh, H. H. Wieder, S. N. Ehrlich, and R. M. Feenstra, J. Appl. Phys. 83, 5137 (1998).

    Article  ADS  Google Scholar 

  25. Y. B. Bolkhovityanov and L. V. Sokolov, Semicond. Sci. Technol. 27, 043001 (2012).

    Article  ADS  Google Scholar 

  26. P. Hirel, J. Godet, S. Brochard, L. Pizzagall, and P. Beauchamp, Phys. Rev. B: Condens. Matter 78, 064109 (2008).

    Article  ADS  Google Scholar 

  27. L. Zuo, A. H. W. Ngan, and G. P. Zheng, Phys. Rev. Lett. 94, 095501 (2005).

    Article  ADS  Google Scholar 

  28. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Phys. Rev. Lett. 100, 025502 (2008).

    Article  ADS  Google Scholar 

  29. J. Hornstra, J. Phys. Chem. Solids 5, 129 (1958).

    Article  ADS  Google Scholar 

  30. A. Vila, A. Cornet, and J. R. Morante, Appl. Phys. Lett. 68, 1244 (1996).

    Article  ADS  Google Scholar 

  31. J. N. Stirman, P. A. Crozier, D. J. Smith, F. Philipp, G. Brill, and S. Sivananthan, Appl. Phys. Lett. 84, 2530 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Bolkhovityanov.

Additional information

Original Russian Text © Yu.B. Bolkhovityanov, A.K. Gutakovskii, A.S. Deryabin, L.V. Sokolov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 4, pp. 746–752.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolkhovityanov, Y.B., Gutakovskii, A.K., Deryabin, A.S. et al. Role of edge dislocations in plastic relaxation of GeSi/Si(001) heterostructures: Dependence of introduction mechanisms on film thickness. Phys. Solid State 57, 765–770 (2015). https://doi.org/10.1134/S1063783415040071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415040071

Keywords

Navigation