Advertisement

Physics of the Solid State

, Volume 57, Issue 4, pp 825–831 | Cite as

Study of the resistive switching of vertically aligned carbon nanotubes by scanning tunneling microscopy

  • O. A. Ageev
  • Yu. F. Blinov
  • O. I. Il’in
  • B. G. Konoplev
  • M. V. Rubashkina
  • V. A. Smirnov
  • A. A. Fedotov
Surface Physics and Thin Films

Abstract

The effect of an external electric field on the electromechanical properties and regularities of the resistive switching of a vertically aligned carbon nanotube (VA CNT) has been studied experimentally using scanning tunneling microscopy. It has been shown that the VA CNT resistivity ratio in the high- and low-resistance states is higher than 25 as the distance between the scanning tunneling microscope (STM) probe and the VA CNT is 1 nm at a voltage of 8 V and depends on the voltage applied between the probe and the VA CNT. The proposed mechanism of resistive switching of VA CNTs is based on an instantaneous deformation and induction of a VA CNT internal electric field as a result of the sharp change in the time derivative of the external electric field strength. The obtained results can be used for the design and fabrication of resistive energy-efficient memory elements with a high density of storage cells on the basis of vertically aligned carbon nanotubes.

Keywords

Electric Field Strength Scan Tunneling Micro External Electric Field Resistive Switching Scan Tunneling Micro Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Chua, Proc. IEEE 91, 1830 (2003).CrossRefGoogle Scholar
  2. 2.
    K. S. Vasu, S. Sampath, and A. K. Sood, Solid State Commun. 151, 1084 (2011).CrossRefADSGoogle Scholar
  3. 3.
    A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77(1), 139 (2000).CrossRefADSGoogle Scholar
  4. 4.
    S. Seo and M. J. Lee, Appl. Phys. Lett. 85(23), 5655 (2004).CrossRefADSGoogle Scholar
  5. 5.
    V. I. Avilov, O. A. Ageev, A. S. Kolomiitsev, B. G. Konoplev, V. A. Smirnov, and O. G. Tsukanova, Izv. Vyssh. Uchebn. Zaved., Elektron. 2(106), 50 (2014).Google Scholar
  6. 6.
    T. H. Kim, E. Y. Jang, N. J. Lee, D. J. Choi, K. J. Lee, J. Jang, and J. S. Choi, Nano Lett. 9, 2229 (2009).CrossRefADSGoogle Scholar
  7. 7.
    J. Yao, J. Zhong, L. Zhong, D. Natelson, and J. M. Tour, Am. Chem. Soc. 3(12), 4122 (2009).Google Scholar
  8. 8.
    Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber, Nano Lett. 8(2), 386 (2008).CrossRefADSGoogle Scholar
  9. 9.
    M. Meyyappan, J. Phys. D: Appl. Phys. 42, 213001 (2009).CrossRefADSGoogle Scholar
  10. 10.
    O. A. Ageev, O. I. Il’in, V. S. Klimin, B. G. Konoplev, and A. A. Fedotov, Khim. Fiz. Mezoskopiya 13(2), 226 (2011).Google Scholar
  11. 11.
    O. A. Ageev, Yu. F. Blinov, O. I. Il’in, A. S. Kolomiitsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Tech. Phys. 58(12), 1831 (2013).CrossRefGoogle Scholar
  12. 12.
    A. D. Bartolomeo, A. Scarfato, F. Giubileo, F. Bobba, M. Biasiucci, A. M. Cucolo, S. Santucci, and M. Passacantando, Carbon 45, 2957 (2007).CrossRefGoogle Scholar
  13. 13.
    J.-M. Bonard and Ch. Klinke, Phys. Rev. B: Condens. Matter 67, 115406 (2003).CrossRefADSGoogle Scholar
  14. 14.
    B. Kozinsky and N. Marzari, Phys. Rev. Lett. 96, 166–801 (2006).CrossRefGoogle Scholar
  15. 15.
    S. L. Konsek, R. J. N. Coope, T. P. Pearsall, and T. Tiedje, Appl. Phys. Lett. 70, 1846 (1997).CrossRefADSGoogle Scholar
  16. 16.
    O. A. Ageev, O. I. Il’in, A. S. Kolomiitsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Nanotechnol. Russ. 7(1–2), 47 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Gao and Z. L. Wang, Nano Lett. 7(8), 2499 (2007).CrossRefADSGoogle Scholar
  18. 18.
    V. Golovnin, I. Kaplunov, O. Malyshkina, B. Ped’ko, and A. Movchikova, Physical Principles, Investigation Methods and Practical Application of Piezomaterials (Tekhnosfera, Moscow, 2013), p. 118 [in Russian].Google Scholar
  19. 19.
    B. Liu, H. Jiang, H. T. Johnson, and Y. Huang, J. Mech. Phys. Solids 52, 1 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • O. A. Ageev
    • 1
  • Yu. F. Blinov
    • 1
  • O. I. Il’in
    • 1
  • B. G. Konoplev
    • 1
  • M. V. Rubashkina
    • 1
  • V. A. Smirnov
    • 1
  • A. A. Fedotov
    • 1
  1. 1.Institute of Nanotechnologies, Electronics, and Electronic Equipment EngineeringSouthern Federal UniversityTaganrogRussia

Personalised recommendations