Physics of the Solid State

, Volume 57, Issue 3, pp 453–459 | Cite as

Second optical harmonic near the surface of ferroelectric photonic crystals and photon traps

  • Yu. P. Voinov
  • V. S. GorelikEmail author
  • K. I. Zaitsev
  • L. I. Zlobina
  • P. P. Sverbil’
  • S. O. Yurchenko
Proceedings of the XX All-Russia Conference on Physics of Ferroelectrics (VKS-XX) (Krasnoyarsk, Russia, August 18–22, 2014)


This paper reports on the results of experimental investigations of the generation of the second optical harmonic localized in a thin subsurface layer of ferroelectric photonic crystals and photon traps. To excite the second optical harmonic, a KGW: Yb solid-state pulsed-periodic laser generating the radiation with a wavelength of 1026 nm in a form of pulses ∼10−13 s long with a repetition frequency of 200 kHz at the average power of 0.1–3.5 W and power density of ∼109−1012 W/cm2 in a spot less than 100 μm in diameter focused near the surface was used. Ferroelectrics, notably, barium titanate or sodium nitrite, were introduced into the pores between SiO2 nanoglobules. It is established that the maximal conversion efficiency of the exciting radiation into the second optical harmonic was several percents. The generation characteristics of the second optical harmonic near the surface of photonic crystals filled with ferroelectrics are compared with the generation of the second optical harmonic in ferroelectric photon traps of barium titanate ceramics and sodium nitrite microcrystals.


Photonic Crystal Barium Titanate Sodium Nitrite Exciting Radiation Maximal Conversion Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Zernike and J. I. Midwinter, Applied Nonlinear Optics (Academic, New York, 1973).Google Scholar
  2. 2.
    R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).CrossRefADSGoogle Scholar
  3. 3.
    G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. Kleinman, Phys. Rev. [Sect.] A 137, A1305 (1965).CrossRefADSGoogle Scholar
  4. 4.
    A. M. Agal’tsov, V. S. Gorelik, and V. N. Moiseenko, Kratk. Soobshch. Fiz., No. 5, 49 (1985).Google Scholar
  5. 5.
    A. M. Agal’tsov, V. S. Gorelik, A. K. Zvezdin, V. A. Murashov, and D. I. Rakov, Kratk. Soobshch. Fiz., No. 5, 37 (1989).Google Scholar
  6. 6.
    V. S. Gorelik, E. V. Zhabotinskii, and G. G. Mitin, Kvantovaya Elektron. (Moscow) 21, 363 (1994).Google Scholar
  7. 7.
    L. D. Rotter, D. L. Kaiser, and M. D. Vaudin, Appl. Phys. Lett. 68, 310 (1996).CrossRefADSGoogle Scholar
  8. 8.
    E. V. Bursian, V. G. Zalesskii, A. A. Luzhkov, and V. V. Maslov, JETP Lett. 64(4), 270 (1996).CrossRefADSGoogle Scholar
  9. 9.
    V. N. Moiseenko, V. S. Gorelik, and V. N. Sharaichuk, Kratk. Soobshch. Fiz., Nos. 5–6, 31 (1992).Google Scholar
  10. 10.
    E. Kim, A. Steinbruck, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, ACS Nano 7, 5343 (2013).CrossRefGoogle Scholar
  11. 11.
    B. G. Yust, N. Razavi, F. Pedraza, Z. Elliott, A. T. Tsin, and D. K. Sardar, Opt. Express 20, 26511 (2012).CrossRefADSGoogle Scholar
  12. 12.
    J. Martorell, R. Vilaseca, and R. Corbalán, Appl. Phys. Lett. 70, 702 (1997).CrossRefADSGoogle Scholar
  13. 13.
    Yu. Garbovskiy and A. Glushchenko, Appl. Opt. 52(22), E34 (2013).CrossRefADSGoogle Scholar
  14. 14.
    R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, J. Opt. Soc. Am. B 25, 325 (2008).CrossRefADSGoogle Scholar
  15. 15.
    S. Gorelik, Quantum Electron. 37, 409 (2007).CrossRefADSGoogle Scholar
  16. 16.
    Yu. P. Voinov, N. F. Gabitova, V. S. Gorelik, L. I. Zlobina, and P. P. Sverbil’, Phys. Solid State 51(7), 1409 (2009).CrossRefADSGoogle Scholar
  17. 17.
    L. P. Avakyants, V. S. Gorelik, L. I. Zlobina, N. N. Mel’nik, P. P. Sverbil’, A. B. Fadyushin, and A. V. Chervyakov, Inorg. Mater. 42(6), 635 (2006).CrossRefGoogle Scholar
  18. 18.
    V. S. Gorelik, Yu. P. Voinov, V. D. Zvorykin, A. I. Lebo, I. G. Lebo, A. O. Levchenko, and N. N. Ustinovsky, J. Russ. Laser Res. 31, 80 (2010).CrossRefGoogle Scholar
  19. 19.
    V. M. Masalov, A. A. Zhokhov, V. S. Gorelik, E. A. Kudrenko, E. A. Shreinman, A. N. Tereshchenko, M. Yu. Maksimuk, A. V. Bazhenov, I. I. Zver’kova, and G. A. Emel’chenko, Phys. Solid State 52(4), 794 (2010).CrossRefGoogle Scholar
  20. 20.
    K. I. Zaytsev, V. S. Gorelik, A. M. Khorokhorov, and S. O. Yurchenko, J. Phys.: Conf. Ser. 486, 012003 (2014).ADSGoogle Scholar
  21. 21.
    G. M. Katyba and V. S. Gorelik, J. Phys.: Conf. Ser. 486, 012020 (2014).ADSGoogle Scholar
  22. 22.
    K. I. Zaytsev, G. M. Katyba, E. V. Yakovlev, V. S. Gorelik, and S. O. Yurchenko, J. Appl. Phys. 115, 213505 (2014).CrossRefADSGoogle Scholar
  23. 23.
    P. A. Norreys, M. Zepf, S. Moustaizis, A. P. Fews, J. Zhang, P. Lee, M. Bakarezos, C. N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F. N. Walsh, J. S. Wark, and A. E. Dangor, Phys. Rev. Lett. 76, 1832 (1996).CrossRefADSGoogle Scholar
  24. 24.
    R. A. Ganeev, Phys.—Usp. 52(1), 55 (2009).CrossRefADSGoogle Scholar
  25. 25.
    R. A. Ganeev, Phys.—Usp. 56(8), 772 (2013).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Yu. P. Voinov
    • 1
  • V. S. Gorelik
    • 1
    Email author
  • K. I. Zaitsev
    • 2
  • L. I. Zlobina
    • 1
  • P. P. Sverbil’
    • 1
  • S. O. Yurchenko
    • 2
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations