Skip to main content
  • Proceedings of the XX All-Russia Conference on Physics of Ferroelectrics (VKS-XX) (Krasnoyarsk, Russia, August 18–22, 2014)
  • Published:

Superprotonics—crystals with rearranging hydrogen bonds

Abstract

Interest in superprotonic crystals M m H n (XO4)(m + n)/2 (M = K, Rb, Cs, NH4; X = S, Se, P, As) is associated with the solution of the fundamental problem of modern condensed state physics, i.e., with the determination of the effect of the hydrogen subsystem on physicochemical properties of materials, including phase transitions. From the viewpoint of practical applications, these crystals are promising materials for developing various electrochemical devices, including fuel cell, and are actively studied for the purpose of stabilizing superprotonic phases. Based on experimental data, conclusions are drawn about structural mechanisms of variations in physical properties of a number of crystals of this family.

This is a preview of subscription content, access via your institution.

References

  1. A. I. Baranov, L. A. Shuvalov, and N. M. Shchagina, JETP Lett. 36(11), 459 (1982).

    ADS  Google Scholar 

  2. A. I. Baranov, I. P. Makarova, L. A. Muradyan, A. V. Tregubchenko, L. A. Shuvalov, and V. I. Simonov, Sov. Phys. Crystallogr. 32(3), 400 (1987).

    Google Scholar 

  3. A. I. Baranov, A. V. Tregubchenko, L. A. Shuvalov, and N. M. Shchagina, Sov. Phys. Solid State 29(8), 1448 (1987).

    Google Scholar 

  4. I. P. Makarova, L. A. Shuvalov, and V. I. Simonov, Ferroelectrics 79, 111 (1988).

    Article  Google Scholar 

  5. A. I. Baranov, Crystallogr. Rep. 48(6), 1012 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. K. Ivanov-Shits and I. V. Murin, Solid State Ionics (St. Petersburg State University, St. Petersburg, 2010), Vol. 2 [in Russian].

    Google Scholar 

  7. T. Norby, Nature (London) 410, 877 (2001).

    Article  ADS  Google Scholar 

  8. S. M. Haile, D. A. Boysen, C. R. I. Chisolm, and R. V. Merle, Nature (London) 410, 910 (2001).

    Article  ADS  Google Scholar 

  9. R. Fitzergerald, Phys. Today 54, 22 (2001).

    Article  Google Scholar 

  10. J. Otomo, N. Minigawa, C. Wen, K. Eguchi, and H. Takahashi, Solid State Ionics 156, 357 (2003).

    Article  Google Scholar 

  11. D. A. Boysen, T. Uda, C. R. I. Chisholm, and S. M. Haile, Science (Washington) 303, 68 (2004).

    Article  ADS  Google Scholar 

  12. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond (W. H. Freeman, San Francisco, 1960).

    Google Scholar 

  13. G. Gilli and P. Gilli, The Nature of the Hydrogen Bond (Oxford University Press, Oxford, 2009).

    Book  Google Scholar 

  14. I. P. Makarova, I. A. Verin, and N. M. Shchagina, Sov. Phys. Crystallogr. 31(1), 105 (1986).

    Google Scholar 

  15. I. P. Makarova, E. E. Rider, V. A. Sarin, I. P. Aleksandrova, and V. I. Simonov, Sov. Phys. Crystallogr. 34(4), 510 (1989).

    Google Scholar 

  16. Y. Uesu and J. Kobayashi, Phys. Status Solidi A 4, 475 (1976).

    Article  ADS  Google Scholar 

  17. D. Swain and T. N. Guru Row, Inorg. Chem. 47, 8613 (2008).

    Article  Google Scholar 

  18. I. P. Makarova, L. A. Muradyan, E. E. Rider, V. A. Sarin, I. P. Aleksandrova, and V. I. Simonov, Ferroelectrics 107, 281 (1990).

    Article  Google Scholar 

  19. I. P. Makarova, Acta Crystallogr., Sect. B: Struct. Sci. 49, 11 (1993).

    Article  Google Scholar 

  20. I. P. Makarova, I. A. Verin, and K. S. Aleksandrov, Ferroelectrics 124, 91 (1991).

    Article  Google Scholar 

  21. I. P. Makarova, I. A. Verin, and K. S. Aleksandrov, Acta Crystallogr., Sect. B: Struct. Sci. 49, 19 (1993).

    Article  Google Scholar 

  22. V. Petřiček, M. Dušek, and L. Palatinus, JANA-2006: Program for Structure Analysis of Crystals Periodic in Three or More Dimensions from Diffraction Data (Institute of Physics, Prague, Czech Republic, 2006).

    Google Scholar 

  23. L. A. Muradyan, M. I. Sirota, I. P. Makarova, and V. I. Simonov, Sov. Phys. Crystallogr. 30(2), 148 (1985).

    Google Scholar 

  24. K. Lukaszewicz, A. Pietraszko, and M. A. Augustyniak, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 49, 430 (1993).

    Article  Google Scholar 

  25. Y. Matsuo, S. Kawachi, Y. Shimizu, and S. Ikehata, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 58, 192 (2002).

    Article  Google Scholar 

  26. Y. Noda, S. Uchiyama, K. Kafuku, H. Kasatani, and H. Terauchi, J. Phys. Soc. Jpn. 59, 2804 (1990).

    Article  ADS  Google Scholar 

  27. C. R. I. Chisolm and S. M. Haile, Solid State Ionics 145, 179 (2001).

    Article  Google Scholar 

  28. D. Swain and T. N. Guru Row, Inorg. Chem. 46, 4411 (2007).

    Article  Google Scholar 

  29. A. I. Baranov, V. V. Grebenev, U. Bismaer, and J. Ludwig, Ferroelectrics 369, 108 (2008).

    Article  Google Scholar 

  30. I. P. Makarova, T. S. Chernaya, A. A. Filaretov, A. L. Vasil’ev, I. A. Verin, V. V. Grebenev, and V. V. Dolbinina, Crystallogr. Rep. 55(3), 393 (2010).

    Article  ADS  Google Scholar 

  31. E. V. Dmitricheva, I. P. Makarova, V. V. Grebenev, V. V. Dolbinina, I. A. Verin, R. Chitra, and R. R. Choudhury, Crystallogr. Rep. 59(6), 878 (2014).

    Article  ADS  Google Scholar 

  32. E. D. Yakushkin and A. I. Baranov, Phys. Solid State 42(8), 1517 (2000).

    Article  ADS  Google Scholar 

  33. I. P. Makarova, T. S. Chernaya, V. V. Grebenev, A. A. Dolbinina, I. A. Verin, and A. A. Simonov, Crystallogr. Rep. 56(6), 994 (2011).

    Article  ADS  Google Scholar 

  34. I. P. Makarova, V. V. Grebenev, T. S. Chernaya, I. A. Verin, V. V. Dolbinina, D. Yu. Chernyshov, and M. V. Koval’chuk, Crystallogr. Rep. 58(3), 393 (2013).

    Article  ADS  Google Scholar 

  35. I. Makarova, V. Grebenev, E. Dmitricheva, V. Dolbinina, and D. Chernyshov, Acta Crystallogr., Sect. B: Struct. Sci. 70, 218 (2014).

    Article  Google Scholar 

  36. E. V. Dmitricheva, I. P. Makarova, V. V. Grebenev, V. V. Dolbinina, and I. A. Verin, Crystallogr. Rep. 59(3), 344 (2014).

    Article  ADS  Google Scholar 

  37. E. V. Dmitricheva, I. P. Makarova, V. V. Grebenev, V. V. Dolbinina, and I. A. Verin, Solid State Ionics 268, 68 (2014).

    Article  Google Scholar 

  38. I. P. Makarova, V. V. Grebenev, V. A. Komornikov, E. V. Dmitricheva, and D. A. Ksenofontov, Crystallogr. Rep. (in press).

  39. V. V. Grebenev, I. P. Makarova, D. A. Ksenofontov, V. A. Komornikov, and E. V. Dmitricheva, Crystallogr. Rep. 58(6), 894 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Makarova.

Additional information

Original Russian Text © I.P. Makarova, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 3, pp. 432–439.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makarova, I.P. Superprotonics—crystals with rearranging hydrogen bonds. Phys. Solid State 57, 442–449 (2015). https://doi.org/10.1134/S1063783415030117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415030117

Keywords

  • Fuel Cell
  • High Temperature Phase
  • Potassium Atom
  • High Proton Conductivity
  • Shubnikov Institute