Skip to main content
Log in

Calculation of the influence of plastic deformation on the evolution of crack stress intensity factors in a body-centered cubic crystal

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The evolution of stress intensity factors in a mixed loading mode has been calculated for different cleavage planes, the direction of the crack front, and the easy slip systems near the crack tip in a body-centered cubic (bcc) crystal. Calculations take into account the mutual influence of the plastic deformation and crack tip shape as well as T stress. The dependence of screening the crack tip by dislocations on the crack orientation, easy slip system, and fracture modes is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Narasimhan, H. Y. Subramanya, S. D. Patil, P. Tandaiya, and U. Ramamurty, J. Phys. D: Appl. Phys. 42, 214005 (2009).

    Article  ADS  Google Scholar 

  2. M. Tanaka, E. Tarleton, and S. G. Roberts, Acta Mater. 56, 5123 (2008).

    Article  Google Scholar 

  3. T. Smida and V. Magula, Mater. Des. 54, 582 (2014).

    Article  Google Scholar 

  4. G. Xin, W. Hangong, K. Xingwu, and J. Liangzhou, Eur. J. Mech. A: Solids 29, 738 (2010).

    Article  ADS  Google Scholar 

  5. M. R. Ayatollahi and K. Sedighiani, Struct. Eng. Mech. 36, 575 (2010).

    Article  Google Scholar 

  6. F. Caputo, G. Lamanna, and A. Soprano, Eng. Fract. Mech. 103, 162 (2013).

    Article  Google Scholar 

  7. Q. Nazarali and X. Wang, Fatigue Fract. Eng. Mater. Struct. 34, 792 (2011).

    Article  Google Scholar 

  8. Yu. G. Matvienko and R. A. Pochinkov, Deform. Razrushenie Mater. 3, 6 (2012).

    Google Scholar 

  9. R. A. Sousa, J. T. P. Castro, A. A. O. Lopes, and L. F. Martha, Fatigue Fract. Eng. Mater. Struct. 36, 25 (2012).

    Article  Google Scholar 

  10. V. N. Shlyannikov, Eng. Fract. Mech. 99, 3 (2013).

    Article  Google Scholar 

  11. J. R. Rice and G. F. Rosengren, J. Mech. Phys. Solids 16, 1 (1968).

    Article  ADS  MATH  Google Scholar 

  12. J. W. Hutchinson, J. Mech. Phys. Solids 16, 13 (1968).

    Article  ADS  MATH  Google Scholar 

  13. L. V. Stepanova, Mathematical Methods of Fracture Mechanics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  14. Z. Li and J. Duan, Int. J. Fract. 117, L29 (2002).

    Article  Google Scholar 

  15. P. Zhu, L. Yang, Z. Li, and J. Sun, Int. J. Fract. 161, 131 (2010).

    Article  MATH  Google Scholar 

  16. R. Zhou, P. Zhu, and Z. Li, Int. J. Fract. 171, 195 (2011).

    Article  Google Scholar 

  17. V. Shlyannikov and A. Tumanov, Int. J. Fract. 185, 49 (2014).

    Article  Google Scholar 

  18. E. Van der Giessen and A. Needleman, Modell. Simul. Mater. Sci. Eng. 3, 689 (1995).

    Article  ADS  Google Scholar 

  19. H. H. M. Cleveringa, E. Van der Giessen, and A. Needleman, J. Mech. Phys. Solids 48, 1133 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. E. Van der Giessen, V. S. Deshpande, H. H. M. Cleveringa, and A. Needleman, J. Mech. Phys. Solids 49, 2133 (2001).

    Article  ADS  MATH  Google Scholar 

  21. Y.-F. Guo and D.-L. Ghao, Mater. Sci. Eng., A 448, 281 (2007).

    Article  Google Scholar 

  22. S. S. Chakravarthy and W. A. Curtin, Modell. Simul. Mater. Sci. Eng. 19, 045009 (2011).

    Article  ADS  Google Scholar 

  23. S. S. Shishvan and E. Van der Giessen, Modell. Simul. Mater. Sci. Eng. 21, 065007 (2013).

    Article  ADS  Google Scholar 

  24. V. Shastry and D. Farcas, Modell. Simul. Mater. Sci. Eng. 4, 473 (1996).

    Article  ADS  Google Scholar 

  25. P. A. Gordon, T. Neeraj, J. Luton, and D. Farcas, Metall. Mater. Trans. A 38, 2191 (2007).

    Article  Google Scholar 

  26. A. Spielmannova, A. Machova, and P. Hora, Acta Mater. 57, 4065 (2009).

    Article  Google Scholar 

  27. I. R. Vatne, E. Østby, and C. Thaulow, Modell. Simul. Mater. Sci. Eng. 19, 085006 (2011).

    Article  ADS  Google Scholar 

  28. C. H. Ersland, C. Thaulow, I. R. Vatne, and E. Østby, Eng. Fract. Mech. 79, 180 (2012).

    Article  Google Scholar 

  29. C. H. Ersland, I. R. Vatne, and C. Thaulow, Modell. Simul. Mater. Sci. Eng. 20, 075004 (2012).

    Article  ADS  Google Scholar 

  30. I. R. Vatne, A. Stukowski, C. Thaulow, E. Østby, and J. Marian, Mater. Sci. Eng., A 560, 306 (2013).

    Article  Google Scholar 

  31. D. Farkas, Curr. Opin. Solid State Mater. Sci. 17, 284 (2013).

    Article  ADS  Google Scholar 

  32. W. A. Spitzig, Acta Metall. 18, 1275 (1970).

    Article  Google Scholar 

  33. D. N. Karpinskii and S. V. Sannikov, Zavod. Lab., Diagn. Mater. 78, 52 (2012).

    Google Scholar 

  34. G. Kulmer and H. A. Richard, Arch. Appl. Mech. 76, 711 (2006).

    Article  ADS  Google Scholar 

  35. P. Livieri and F. Segala, Eng. Fract. Mech. 81, 110 (2012).

    Article  Google Scholar 

  36. A. Stoll and A. J. Wilkinson, Int. J. Fract. 164, 103 (2010).

    Article  MATH  Google Scholar 

  37. E. Kroner, Kontinuumtheorie der Versetzungen und Eigenspannungen (Springer-Verlag, Berlin, 1958).

    Book  Google Scholar 

  38. D. N. Karpinskii and S. V. Sannikov, Sov. Tech. Phys. Lett. 11(12), 610 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Karpinskii.

Additional information

Original Russian Text © D.N. Karpinskii, S.V. Sannikov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 3, pp. 550–555.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpinskii, D.N., Sannikov, S.V. Calculation of the influence of plastic deformation on the evolution of crack stress intensity factors in a body-centered cubic crystal. Phys. Solid State 57, 563–568 (2015). https://doi.org/10.1134/S1063783415030105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415030105

Keywords

Navigation